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A B S T R A C T   

The capacity of soil to sequester carbon (C) is a key process that promotes the reduction of CO2 in the atmo
sphere. Soils can absorb as much as 20% of anthropogenic carbon emissions, which can contribute to mitigate 
climate change. This capacity relies on the organo-mineral association, which includes different minerals, Fe and 
Al oxides, which have a critical soil organic carbon (SOC) sorption surface. Based on an equation of the potential 
C saturation deficit of fine soil particles (<20 μm/silt and clay fractions) for tropical regions, this study inves
tigated the SOC sequestration potential of the clay fraction for soils in Piracicaba region, São Paulo State, Brazil 
as influenced by the clay minerals. This potential was fitted to a spatial regression model for soil depths 0–20 cm 
and 80 to 100 cm. In the surface layer, the sequestration potential was mostly explained by the relative abun
dance of soil minerals (Kaolinite, Hematite, Goethite and Gibbsite) determined using vis-NIR-SWIR spectroscopy. 
A direct relationship was observed with Goethite and Gibbsite, indicating that low concentrations would reduce 
the sequestration potential. At 80 to 100 cm depth, Kaolinite and Hematite explained most variation in SOC 
sequestration potential. Additionally, the C associated with the mineral fraction and the C saturation potential as 
a function of minerals were modeled and a strong importance of hematite in the C sequestration and stabilization 
cycle was identified at both depths. The individual mineral contribution to SOC sequestration potential was also 
mapped, which identified high contributions of goethite and gibbsite for deep soil layers. The influence of land 
use on the carbon sequestration potential of minerals was observed, with the greatest potential being found in 
areas with pasture and cropping mosaics and grassland and forest mosaics, with a high presence of kaolinite and 
hematite. These minerals have a greater potential for carbon sequestration at greater depths and, therefore, could 
be critical in climate change mitigation strategies.   

1. Introduction 

The ability of soil to sequester carbon is considered a cost-effective 
and plausible method to reduce the concentration of CO2 in the atmo
sphere (Houghton, 2003, Kimble et al., 2003). This is because global 
soils have the potential to absorb about 20% of anthropogenic carbon 
emissions (Yang et al., 2021). Therefore, carbon sequestration is a 
phenomenon that can help to partially mitigate climate change 
(Padarian et al., 2022), as for greenhouse gas emissions (Minasny et al., 

2017). 
Hassink (1997) and Loveland and Webb (2003) proposed that soils 

have a limited capacity to retain carbon, which is based on the reactive 
capacity of mineral surfaces (Churchman et al., 2020; Prout et al., 2021). 
Therefore, it is understood that the clay fraction has a finite carbon 
storage capacity (Diekow et al., 2005), and the search for this storage 
limit justifies the determination of carbon sequestration potential (Six 
et al., 2002; Stewart et al., 2008; Chung et al., 2008), which also depends 
on the limited potential of the soil to stabilize soil organic carbon (SOC) 
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against microbial mineralization. 
The SOC stabilization is based on selective preservation associated 

with recalcitrance or chemical resistance (Singh et al., 2018). It is also 
related to the spatial inaccessibility of SOM by occlusion in soil aggre
gates, especially in microaggregates (Hoffland et al., 2020). Further
more, the interaction with mineral surfaces favors the formation of 
organic-mineral complexes (Sollins et al., 1996, Von Lützow et al., 
2006), especially with clay minerals and metal ions (Oades, 1988, 
Arrouays et al., 2006, Singh et al., 2018). 

Hassink (1997) indicated that the potential carbon saturation is 
associated with silt and clay particles. Angers et al. (2011) also pointed 
out that fine-textured soils have a higher retention capacity than sandy 
soils, due to a larger specific surface area available for organo-mineral 
interactions present in the silt and clay fractions (Stewart et al., 
2008). Similarly, Zeraatpishe and Khormali (2012) observed that the 
SOC can be adsorbed by coarse aggregates, fine aggregates, and particles 
smaller than 0.053 mm. Brodowski et al. (2006) found that particles 
such as clay and silt alone cannot retain much SOC, and more than 90% 
is stored in the aggregates, which protects SOC from microbial decom
position (Hoffland et al., 2020, Baldock and Skjemstad, 2000, Lützow 
et al., 2006). 

The SOC dynamics is closely related to the soil development process 
and, therefore, to its formation factors (Hobley et al., 2015). There are 
active factors, such as climate and organisms, and passive factors, such 
as parent materials, relief, and time. To make predictions of the terres
trial carbon cycle, it is necessary to understand the complete processes 
related to the sequestration and release of carbon (Marschner et al., 
2008). 

Ingram and Fernandes (2001) and Weil and Brady (2016) indicated 
the importance of mineralogy on the potential for SOC storage, espe
cially soils in the deeper layers (Gray et al., 2015, Wiesmeier et al., 
2011). In contrast, land use presents a more significant influence in the 
superficial layers (Adhikari et al., 2014, Hobley et al., 2015). For Ashton 
et al. (2016), clay content alone is not related to the increase or decrease 
of carbon content. The concentration is influenced by soil mineralogy 
and the geochemistry of the soil, thus depending on the presence of clay 
minerals and iron oxides of high specific surface area and pH. The clay 
fraction is key to carbon sequestration because it involves different 
minerals and varying amounts of pedogenic Fe and Al oxides (Yang 
et al., 2021; Kirsten et al., 2021; Prout et al., 2021). Minerals such as iron 
and aluminum oxides, specifically goethite and gibbsite are recognized 
as critical carbon sorption surfaces (Kaiser and Zech, 2000; Dos Reis 
et al., 2014). 

Feng et al. (2005) highlighted the adsorption of anionic cations by 
soil organic matter through ionic linkages related to hydrogen, cation 
and anion exchange, ligand exchange and cation bridges, likewise 
electrostatic attractions or van der Waals linkages alone can occur. Soil 
oxides, oxyhydroxides and hydroxides present electrostatic attractions 
and ionic linkages between the hydroxyl groups of the oxides and the 
carboxyl or hydroxyl groups of the SOM, with additional strong re
lationships between iron manganese and humic substances (De Mastro 
et al., 2020). This adsorption of SOM by minerals favors SOC stabiliza
tion, reducing microbial mineralization (Kalbitz et al., 2005), due to the 
specific surface area of these minerals and their surface charge that fa
vors these linkages and stabilizes SOM. 

Interactions of the reactive phases of poorly crystalline Fe and Al 
oxides with SOM are an essential mechanism in the long-term stabili
zation of SOC (Kögel-Knabner et al., 2008, Percival et al., 2000). Ac
cording to Weber et al. (2006), the biogeochemical cycling of iron is 
closely related to the dynamics of SOM. Lalonde et al. (2012) noted that 
about 21.5% of global SOC is associated with reactive forms of Fe. 
Crystalline Fe and Al oxides present reactive sites on the surface that can 
adsorb SOC (De Mastro et al., 2020), however Duiker et al. (2003) and 
De Mastro et al. (2020) observed that Fe oxides of low degree of crys
tallinity stabilize SOM more effectively than crystalline Fe oxides or 
oxyhydroxides, because they present higher specific surface area and 

density of hydroxyl sites compared to crystalline ones, increasing their 
chelation capacity (Wen et al., 2019). Zeraatpishe and Khormali (2012), 
to the contrary, reported that amorphous and crystalline iron oxides and 
hydroxides retain 50–70% of total carbon. 

Poorly crystalline Fe minerals have a specific surface area of around 
800 m2 g− 1, for example, for ferrihydrite, higher than crystalline forms 
of Fe found around 200 m2 g− 1, as in the case of goethite (Eusterhues 
et al., 2005). According to Churchman and Velde (2019), SOC shows a 
preference for weakly crystalline oxides as well as Fe and Al silicates. 
Bonds with 2:1 phyllosilicates are going to depend on their relative 
surface reactivities. Therefore, minerals such as smectite that are more 
reactive present greater potential to retain carbon (Churchman et al., 
2020). However, a more significant effect occurs with poorly crystalline 
Fe oxyhydroxides (Rasmussen et al., 2007). The combined effect of sil
icates and oxides is involved in SOC stabilization, for example, ferri
hydrite and goethite can favor the sorption capacity of kaolinite (De 
Mastro et al., 2020). 

Kirsten et al. (2021) indicated that clay minerals and oxyhydroxides 
(pedogenic metal oxides) are the most reactive and control the persis
tence of SOC. However, most studies did not explicitly evaluate the 
contribution of clay minerals on SOC. For example, Weismeier et al. 
(2013) estimated the SOC sequestration potential of silt and clay parti
cles, in soils from Germany, without specifying the clay mineral type. 
Ashton et al. (2016) analyzed SOC concentrations in different parent 
materials and clay mineralogies, evaluating total concentrations without 
determining the specific contribution of each mineral. Yang et al. (2021) 
evaluated the spatio-temporal dynamics of carbon adsorption and 
release in aggregates of a transparent smectite clay, also relating enzy
matic decomposition, through 4D imaging on a microfluidic chip. It 
should be noted that this study was not performed on a specific soil. 
Kirsten et al. (2021) determined the contribution of kaolinite, gibbsite, 
goethite, and hematite to carbon storage in soils under forests and 
agricultural lands, evaluating only the variation of carbon and clay 
mineral concentrations, but keeping the mineral types invariant. 

Mapping the carbon sequestration potential that clay minerals 
composing the clay fraction has is important for the understanding of 
their dynamics and soil management (Padarian et al., 2022), remem
bering that SOC contents and their stable forms vary in relation to the 
amount and type of mineral (Yang et al., 2021; Kirsten et al., 2021; Prout 
et al., 2021; Dos Reis et al., 2014). However, in general, soil mapping has 
limitations in terms of spatial delimitation (Teng et al., 2018), and de
pends on the estimation and description of their properties. These con
ventional methods require complex laboratory chemical analysis and 
expertise for their description, incurring more time and costs (Shi et al., 
2015), and are generally developed with limited information on quan
tity, volume and spatial coverage (Soil Survey Staff, 2017). 

Information systems and remote sensing techniques have facilitated 
the acquisition of spatial information, specifically by digital soil map
ping (DSM) approaches, which combine point soil data with statistically 
correlated auxiliary data (covariates) (McBratney et al., 2003), mainly 
through machine learning techniques (Padarian et al., 2019). Addi
tionally, reflectance spectroscopy is a technology that has improved 
DSM (Teng et al., 2018), as the evaluation of infrared spectral curves 
provides useful indicators to map, classify and monitor different soil 
properties (Di Iorio et al., 2019), as is the case of mineral quantification 
(Mendes et al., 2021). 

This study has the objective of analyzing the individual contribution 
of each mineral that composes the clay fraction in the sequestration 
potential of new SOC, through the quantification, modeling and map
ping of this potential in different pedogenetic soils of Brazil, using 
remote sensing products and the equation of Feller and Beare (1997) to 
obtain the theoretical SOC sequestration potential. Considering the 
importance of the minerals that compose the clay fraction and that this 
fraction in tropical soils is dominated by kaolinite, gibbsite, hematite 
and goethite (Kämpf and Curi, 2003, Schaefer et al., 2008) and the high 
sorption power of Fe and Al oxides for organic molecules, it is expected 
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that the SOC sequestration potential is directly related to the concen
tration of these minerals. 

2. Methodology 

2.1. Study area 

The study area is in Piracicaba region, São Paulo State, Brazil, with 

approximately 2,598 km2 (Fig. 1). The climate of the region, according 
to the Köppen system, is classified as subtropical Cwa, with a dry winter 
and a rainy summer, with an average annual temperature ranging from 
20 to 22.5◦ C and annual rainfall between 1200 and 1400 mm (Alvares 
et al., 2013). In relation to the topography, undulating highlands and 
rolling hills with altitudes ranging from 450 to 950 m are characteristic. 
Agricultural land uses such as sugarcane and pasture are dominant 
under no-till and conventional tillage management systems. The main 

Fig. 1. Location of the study area (Piracicaba region, São Paulo state). The geology map is from Bonfatti et al. (2020).  

Fig. 2. Methodological scheme of the point modeling of the carbon sequestration potential of minerals that compose the clay fraction. sat-pot: potential C saturation, 
sat-def: C saturation deficit, CmOM cur: actual concentration of C in mineral-associated organic matter, Gt: goethite, Hem: hematite, Gbs: gibbsite, Kln: kaolinite, A: 
relative abundance of soil minerals. 
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Fig. 3. Simple linear regression between total soil C (x-axes) and C in organic matter associated with the mineral fraction (mOM) (y-axes).  

Fig. 4. Methodological scheme for the spatialization of the carbon sequestration potential of the minerals that compose the clay fraction, based on map algebra.  
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soil types are Cambisol, Gleysol, Ferralsol, Nitosol, Lixisol, Leptsol, 
Arenosol and Planosol, according to the World Reference Base (IUSS 
Working Group WRB, 2015). Geologically, there are diverse parent 
materials, such as siltstones, tillites, varvites, conglomerates, sand
stones, limestones, siltstones, flint, dolomite, siltite, pyrombetumino
site, schists, diabase, and basalt (Bonfatti et al., 2020). 

The soil observations used are from the Brazilian Soil Spectral Li
brary (BSSL) (Demattê et al., 2019). A total of 2354 observations from 
0 to 20, 40 to 60, and 80 to 100 cm depths were used (Fig. 1). The soil 
organic carbon (SOC) content and particle size were analyzed by the 
Walkey-Black method (wet digestion) (Walkey and Black, 1934) and the 
hydrometer method (Bouyoucus and John, 1962), respectively. 

2.2. Point modeling of soil carbon sequestration potential 

2.2.1. Carbon saturation potential 
Hassink (1997) proposed the following equation to determine the C 

saturation potential of fine soil particles (<20 μm/silt and clay 
fractions):  

Csat-pot = 4.09 + 0.37 * Particles ≤ 20 µm (%)                                           

where Csat-pot corresponds to the potential carbon saturation (mg 
g− 1), referred to as the theoretical maximum SOC that is stabilized in 
fine particles and allows estimating the SOC storage potential (Fujisaki 
et al., 2018). However, considering the study area, the modified 

Table 1 
Fitted spatial regression models and its related statistics for potential saturation 
deficit of SOC (Sat-def). λ = autoregressive parameters, ρ = spatial autocorre
lation coefficient, r = correlation coefficient, MIT = Moran Index test.  

Model λ ρ AIC r MIT Explanatory 
variables  

0–20 cm 
PAR 0.98  6848 0.51 6.41E-13 Sat-def-a 

(2.22E- 

16) 
SEM 0.97  6708 0.56 2.15E-08 AKln + AGbs +

AGt + AHem (2.22E- 

16)  
SLM  0.95 6720 0.55 1.53E-10 AKln + AGbs +

AGt + AHem  (2.22E- 

16) 
SLMA  0.97 6700 0.56 9.90E-06 AKln + AGbs +

AGt + AHem  (2.22E- 

16) 
SARAR 0.87 0.66 6692 0.56 0.39407 AKln + AGbs +

AGt + AHem (7.53E- 

13) 
(7.18E- 

04) 
SDEM 0.97  6701 0.56 2.98E-05 AKln + AGbs +

AGt + AHem (2.22E- 

16)   

80–100 cm 
PAR 0.99  4520 0.62 2.00E-15 Sat-def-c 

(2.22E- 

16) 
SEM 0.98  4455 0.65 1.98E-10 AKln + AGbs +

AGt + AHem (2.22E- 

16)  
SLM  0.98 4445 0.65 1.65E-06 AKln + AGbs +

AHem  (2.22E- 

16) 
SLMA  0.96 4443 0.65 3.98E-05 AKln + AGbs +

AGt + AHem  (2.22E- 

16) 
SARAR 0.82 0.85 4429 0.66 0.37 AKln + AHem 

(4.88E- 
02) 

(1.21E- 

02) 
SDEM 0.98  4449 0.65 1.15E-07 AKln + AGbs +

AGt + AHem (2.22E- 

16)  

Table 2 
Fitted spatial regression models and its related statistics for C in organic matter 
associated with the mineral fraction (CmOM) and Potential carbon saturation 
(Sat-pot). λ = autoregressive parameters, ρ = spatial autocorrelation coefficient, 
r = correlation coefficient, MIT = Moran Index test.  

Model λ ρ AIC r MIT Explanatory 
variables 

C in organic matter associated with the mineral fraction (CmOM)  
0–20 cm 

PAR 0.98  6823.3 0.56 0 CmOM-a 
(2.22E- 

16) 
SEM 0.99  6700.3 0.59 0 AKln + AGbs +

AGt + AHem (2.22E- 

16)  
SLM  0.98 6695.5 0.59 2.87E- 

15 
AKln + AGbs +
AGt + AHem  (2.22E- 

16) 
SLMA  0.98 6693.1 0.59 2.31E- 

11 
AKln + AGbs +
AGt + AHem  (2.22E- 

16) 
SARAR 0.88 0.88 6659.1 0.60 0.1723 AKln + AGbs +

AGt + AHem (0.015) (0.013)  
80–100 cm 

PAR 0.99  3895.2 0.64 0 CmOM -c 
(2.22E- 

16) 
SEM 0.99  3783.8 0.68 0 AGbs + AGt +

AHem (2.22E- 

16)  
SLM  0.98 3783.7 0.67 0 AGbs + AGt +

AHem  (2.22E- 

16) 
SLMA  0.98 3778.9 0.68 0 AGbs + AGt +

AHem  (2.22E- 

16) 
SARAR 0.94 0.92 3734.3 0.70 5.05E- 

02 
AGbs + AGt +

AHem (1.59E- 
06) 

(1.60E- 

04)  

Potential carbon saturation (Sat-pot)  
0–20 cm 

PAR 0.99  7053.1 0.65 0 Sat-pot-a 
(2.22E- 

16) 
SEM 0.99  6620 0.75 0 AKln + AHem 

(2.22E- 

16)  
SLM  0.89 6623.9 0.74 1.15E- 

14 
AKln + AHem  

(2.22E- 

16) 
SLMA  0.98 6610.6 0.43 4.68E- 

11 
AKln + AHem  

(2.22E- 

16) 
SARAR 0.89 0.71 6586.9 0.76 0.28 AKln + AHem 

(2.22E- 

16) 
(1.05E- 

07)  
80–100 cm 

PAR 0.99  4711.8 0.75 0 Sat-pot-c 
(2.22E- 

16) 
SEM 0.99  4517.5 0.79 0 AKln + AGbs +

AHem (2.22E- 

16)  
SLM  0.98 4501.1 0.79 1.57E- 

08 
AKln + AGbs +

AHem  (2.22E- 

16) 
SLMA  0.99 4534.2 0.79 0 AKln + AGbs +

AHem  (2.22E- 

16) 
SARAR 0.86 0.86 4481.5 0.66 0.37 AKln + AGbs +

AHem (8.54E- 
05) 

(9.14E- 

06)  
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Table 3 
Parameters of the SARAR spatial regression model for depths 0 to 20 cm and 8 to 100 cm for potential saturation deficit of SOC (Sat-def).  

Coefficients Estimate Asymptotic 
Std. Error 

z value Pr(>|z|) Impact Direct Impact 
p-value  

0–20 cm 
(Intercept) − 0.64 0.89 − 0.72 0.47   

AKln 840 142 5.92 3.26E-09 845 1.90E-09 

AGbs − 1264 376 − 3.35 0.000786 − 1272 0.000563 
AGt − 164 40 − 4.08 4.48E-05 − 165 2.94E-05 

AHem 612 90 6.80 1.02E-11 616 6.10E-13   

80–100 cm 
(Intercept) − 1.66 1.28 − 1.30 0.19   

AKln 600 101 5.94 2.92E-09 611 2.72E-08 

AHem 127 66.9 1.90 0.05 130 3.35E-02  

Table 4 
Parameters of the SARAR spatial regression model for depths 0 to 20 cm and 8 to 100 cm for C in organic matter associated with the mineral fraction (mOM) and 
Potential carbon saturation (Sat-pot).  

Coefficients Estimate Asymptotic 
Std. Error 

z value Pr(>|z|) Impact Direct Impact 
p-value 

C in organic matter associated with the mineral fraction (mOM)  
0–20 cm 

(Intercept) − 0.81 1.41 − 0.57 0.57   
AKln − 278.9 137.1 − 2.03 0.041 − 283.7 0.061 
AGbs 1283.4 364.8 3.52 0.0004 1305.4 0.0007 
AGt 164.7 38.4 4.29 1.75E-05 167.6 8.94E-06 

AHem 183.2 85.9 2.13 0.032 186.3 0.028  
80–100 cm 

(Intercept) − 1.71 1.78 − 0.95 0.34   
AGbs 720.1 234.1 3.07 0.002 739.8 0.003 
AGt 66.6 22.9 2.91 0.003 68.4 0.009 

AHem 188.4 57.8 3.26 0.001 193.6 0.0009  

Potential carbon saturation (mg g¡1) (Sat-pot)  
0–20 cm 

(Intercept) − 0.46 1.3 − 0.35 0.72   
AKln 616.6 121.6 5.07 3.95E-07 621.6 4.95E-07 

AHem 824.2 65.9 12.5 2.22E-16 830.9 2.22E-16  

80–100 cm 
(Intercept) − 3.03 1.15 − 2.61 0.009   

AKln 716.4 110.8 6.47 9.98E-11 729.5 0.0002 
AGbs 886.4 385.4 2.30 0.021 902.7 0.035 
AHem 346.4 78.4 4.42 1.004E-05 352.8 6.36E-05  

Fig. 5. Importance of the explanatory variables of the SARAR spatial regression model for depths 0 to 20 cm and 8 to 100 cm for the potential carbon saturation 
deficit or carbon sequestration potential (sat-def), C in organic matter associated with the mineral fraction (CmOM) and Potential carbon saturation (sat-pot). 
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equation by Feller and Beare (1997) for tropical soils was used, as it 
included samples of Brazilian clay soils with iron and aluminum oxy
hydroxides, some located in our study area (Fig. 2):  

Csat-pot = 3.2 + 0.29 * Particles ≤ 20 µm (%) (r = 0.95, p < 0.001)              

In this study, the value of the percentage of fine soil particles (par
ticles ≤ 20 µm (%)) was replaced by the percentage of clay. The silt 
fraction, both coarse (20–53 μm) and fine fraction (2–20 µm), was not 
used in this study, as it was reported that the silt fraction of highly 
weathered soils with high contents of kaolinite and iron and aluminum 
oxides store a small amount of carbon, representing about 4.8% of the 
total C content (Rodrigues et al., 2022). Fig. 2 shows the methodological 
sequence of the point modeling to determine the C sequestration po
tential and to generate an equation to predict this potential based on 
spectral information associated with the minerals of the clay fraction. 

The determination of the C saturation deficit requires the actual 
concentration of C in the fine soil particles (<20 µm). For this, 35 
representative soil samples were selected from the study area, based on 
the conditioned Latin hypercube sampling method, which corresponds 
to a stratified random sampling procedure where the selected samples 
follow multivariate characteristics according to the indicated covari
ables (Yang et al., 2020). Here, the Soil Synthetic Image (SYSI), soil type 
and variability in clay and C content were considered as covariates. 

In these representative samples, fractionation was performed to 
quantify the C in particulate organic matter and the C in organic matter 
associated with the mineral fraction (mOM) (Cotrufo et al., 2019) 
following the methodology described by Jindaluang et al. (2013). The 
soil was dispersed using 5% sodium hexamethasphate solution and 
considering the low contribution of the coarse and fine silt fraction to 
the total carbon storage described by Rodrigues et al. (2022) the sepa
ration of sand and clay/silt faction was performed by 53 µm sieving. 
Subsequently, a linear regression model based on the total SOC content 

and mOM was developed to predict the C content of mOM in the 
remaining samples, with an R2 fit of 0.98 (Fig. 3). Therefore, the C 
saturation deficit, corresponds to the expression:  

Csat-def = Csatpot- (0.8966*SOC total + 0.0773)                                            

Subsequently, the carbon reserve or stock of this difference is 
calculated from this difference, using the Benites et al. (2007) equations: 

SOC − stock = (SOC × D × BD) × 10 

Where: SOC-stock = Soil Organic Carbon Stock (g m− 2), SOC = Soil 
Organic Carbon content (g kg− 1), D = soil thickness (cm), BD = bulk 
density (g cm− 3). The bulk density is calculated from: 

BD
(
g cm− 3) = 1.5688 − 0.0005 × clay

(
g kg− 1) − 0.0090

× SOC
(
g kg− 1)

2.2.2. Spatial regression analysis 
As pointed out by Marschner et al. (2008), predictions of SOC storage 

potential require an understanding of the processes related to SOC 
sequestration and release. Several authors (Hassink, 1997; Yang et al., 
2021; Kirsten et al., 2021), highlighted the importance of minerals 
associated with the clay fraction in C sequestration because they involve 
variable amounts of minerals that have an affinity with organic mole
cules, according to the interaction on their surfaces that favors the for
mation of organic-mineral complexes (Sollins et al., 1996, Von Lützow 
et al., 2006), reflecting in higher stability of SOC (De Mastro et al., 
2020). Thus, this study focused on specifically demonstrating the 
response of variability in mineralogy on SOC sequestration potential; 
therefore, regression models were built to predict the theoretical po
tential SOC saturation deficit (Sat-def), potential C saturation (Sat-pot), 
and C in mineral-associated organic matter (CmOM), each as a function 
of the mineral contents that make up the clay fraction. According to 

Fig. 6. Carbon saturation potential, C in organic matter associated with the mineral fraction (mOM), saturation deficit, and deficit stock associated with clay contents 
at soil depth of 0 to 20 cm. 
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Table 5 
Areas expressed in m2 with high, medium and low potential saturation of COS according to historical land use, type of mineral and soil depth A) from 0 to 20 cm, B) from 40 to 60 cm, C) from 80 to 100 cm.  

Depth Mineral C retention 
potential 

Agriculture Agriculture 
þ Forest 

Agriculture 
þ Pasture 

Agriculture þ
pasture þ
forest 

Agriculture50 
þ forest 

Agriculture50 
þ pasture 

Forest Forest þ
pasture 

Forest50 þ
agriculture 

forest50 
þ pasture 

Pasture Pasture50 þ
agriculture 

Urban 
þ road 

Water 

A Kaolinite Low 52396.6 465.6 262.7 23562.2 20265.8 38032.0 4393.6 1.6 7323.5 215.1 15.9 1842.2 12186.4 1802.7 
Medium 13677.1 42.0 146.2 6874.3 3763.8 29507.4 473.8 0.4 858.5 19.2 17.6 2106.3 1782.6 36.8 
High 7360.7 19.5 104.4 2856.0 1661.7 19954.7 201.0 0.0 325.6 4.5 16.4 1649.2 648.8 15.6 

Goethite Low 73434.3 527.1 513.4 33292.5 25691.2 87493.8 5068.4 2.0 8507.6 238.7 50.0 5597.7 14617.8 1855.1 
Medium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
High 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Hematite Low 66288.9 485.9 460.3 30888.7 23123.2 77702.7 4761.1 2.0 8002.5 232.5 43.2 4990.3 14130.4 1728.4 
Medium 3688.8 17.2 37.8 1507.7 1270.6 6256.7 174.5 0.1 275.2 3.5 5.7 495.5 284.7 29.9 
High 3456.6 24.0 15.2 896.1 1297.4 3534.7 132.9 0.0 229.9 2.7 1.1 111.9 202.7  96.8 

B Kaolinite Low 71.4 12.8 6.2 163.2 81.5 133.5 15.0 0.0 28.6 0.9 0.0 9.5 123.6 107.7 
Medium 48898.5 435.4 341.2 25196.8 19562.4 50230.5 3977.6 1.7 6771.1 203.7 33.1 3593.9 10811.2 1666.4 
High 24464.5 78.9 166.0 7932.5 6047.4 37130.0 1075.8 0.3 1707.9 34.1 16.9 1994.2 3683.0 80.9 

Goethite Low 40753.6 385.4 131.9 11137.0 14632.5 17110.1 2298.7 0.5 3909.2 112.9 0.7 224.8 9804.2 1749.9 
Medium 29688.4 141.0 342.2 21566.7 10708.3 61886.3 2769.4 1.6 4591.3 125.9 45.4 4814.1 4653.6 105.2 
High 2992.3 0.6 39.3 588.8 350.4 8497.7 0.3 0.0 7.1 0.0 3.8 558.7 160.0 0.0 

Hematite Low 28685.1 348.7 144.8 13647.5 13272.1 19183.1 2379.2 0.6 4280.7 130.3 3.0 589.5 8785.2 1678.6 
Medium 23448.0 112.6 186.1 11982.5 7155.1 35365.3 1624.2 1.2 2648.0 70.4 23.4 2413.4 3562.1 120.4 
High 21301.2 65.7 182.5 7662.5 5264.0 32945.6 1065.0 0.2 1578.8 38.0 23.6 2594.8 2270.6 56.1 

C Kaolinite Low 5.2 0.0 0.0 1.5 1.4 0.9 0.0 0.0 0.3 0.1 0.0 0.2 1.4 0.0 
Medium 50559.7 354.1 386.9 24990.2 18462.5 57869.0 4162.6 1.7 6751.2 199.0 42.3 4554.3 9986.5 1302.4 
High 22869.4 173.0 126.5 8300.8 7227.3 29624.2 905.9 0.3 1756.0 39.7 7.7 1043.2 4629.9 552.7 

Goethite Low 16045.7 38.5 22.1 1323.4 4608.5 3656.2 96.6 0.0 209.0 5.9 0.2 52.1 2363.4 115.8 
Medium 33551.0 431.8 228.7 18888.6 14494.6 29235.3 3986.0 1.3 6420.1 183.0 9.5 1522.5 10177.2 1706.4 
High 23837.6 56.7 262.6 13080.4 6588.1 54602.6 985.9 0.7 1878.5 49.9 40.3 4023.0 2077.2 32.9 

Hematite Low 3983.1 89.4 42.0 3303.2 2218.1 3529.6 572.7 0.2 1152.4 32.1 1.5 267.2 1649.2 613.1 
Medium 40247.3 294.0 374.5 24427.0 14854.8 62214.4 3759.0 1.6 6058.4 179.0 43.0 4681.5 9522.6 818.3 
High 29204.0 143.7 96.9 5562.3 8618.3 21750.1 736.7 0.2 1296.8 27.7 5.5 649.0 3446.0 423.6  
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Okunlola et al. (2021), the presence and quantity of a specific mineral 
content depend on the spatial location. Therefore, it was necessary to 
perform a regression analysis considering the geographic coordinates of 
the samples and the spatial dependence of soil variability (Webster and 
Oliver, 2007), so a weight matrix associated to all neighbors was 
generated. 

The spatial regression analysis considered as dependent variables the 
potential SOC saturation deficit or potential SOC sequestration and 
potential C saturation (Sat-pot), calculated from the equation of Feller 
and Beller (1997) and the C in mineral-associated organic matter 
(CmOM) determined in the laboratory, as explanatory variables were 
considered the relative abundance of soil minerals represented by their 
infrared spectral amplitudes (calculated from diffuse reflectance spec
troscopy data (Vis-NIR-SWIR)). The mineral amplitudes correspond to 
the difference between maxima and minima of the Savitzky-Golay sec
ond derivative curves obtained from the Kubelka-Munk absorption 
curves of the original spectra. These amplitudes were obtained from the 
study of Mendes et al. (2020), in which the bands associated with 
goethite (Gt, 422/450 nm), hematite (Hem, 535/575 nm), gibbsite (Gbs, 
2265/2285 nm) and kaolinite (Kln, 1415/2205 nm) are defined. A data 
set of 1248 samples was taken for the 0 to 20 cm depth and 833 for the 
80 to 100 cm depth. 

Spatial regression models, such as spatial autocorrelation models 
(SAC; referred to in the literature as SARAR), spatially lagged models 
(SLM) and spatial error model (SEM and SDEM) were fitted to predict 

the potential SOC sequestration spatially (Elhorts, 2014). SARAR is a 
double autoregressive model that includes the autoregressive compo
nent of the response and the residuals, allowing to explain the spatial 
dependence of the residuals. 

The models are expressed in the following equation: 

Y = λWY + αιn + Xβ + u; |u| < 1
u = ρWu + ε|ρ| < 1 

Where, Y Where, Y represents the potential saturation deficit of SOC 
(Sat-def) or potential saturation of C (Sat-pot) or the CmOM, X repre
sents the matrix of explanatory variables associated with the amplitude 
of minerals, W corresponds to the matrix of weights in relation to the 
distances of the nearest neighbor centroids in the polygons generated by 
tessellation of the soil sampling points, λ represents the spatial autore
gressive coefficient, ρ the spatial autocorrelation coefficient, α corre
sponds to the intercept, β represents the parameters linked to the 
explanatory variables, u is associated with the vector of residuals with 
spatial dependence and ε N(0, σ2I), where I is an identity matrix. 

The choice of the model that best explains the statistical relationship 
of the experimental data was based on the lowest value of the Akaike 
information criterion (AIC) and on the fulfilment of the assumption of 
independence of the residuals based on the Moran Index Test (MIT), 
with the matrix of weights of all neighbors (Liu and Chen, 2021), where 
the p-value of the test must be greater than 0.05. In the case that more 
than one model satisfied the above assumptions, the highest correlation 

Fig. 7. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), carbon saturation potential (b) and saturation deficit (c) for 0 to 20 cm.  
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(r) between the observed values of response Y and the values estimated 
by the model was used as a criterion (Hoge et al., 2018). 

Once the spatial regression model has been selected, it is important 
to evaluate and interpret the impact of the explanatory variables to 
determine the most important ones, however, in some spatial regression 
models, such as the autoregressive ones, it is not possible to perform this 
interpretation directly with the coefficients of the model as it is evalu
ated in classical regression models, therefore, according to Elhorst 
(2014), strategies are proposed for the estimation and interpretation of 
these coefficients, dividing them into direct, indirect and total impacts, 
which are obtained from the impacts function of the spatialreg library of R 
(Mendez, 2020). For the present study, the direct impacts are analyzed 
and the relative importance of each explanatory variable is calculated 
according to the total impacts. 

2.3. Spatialization of carbon sequestration potential 

The carbon sequestration potential of the clay fraction was spa
tialized by applying the equations described in the point modeling on 
the SOC and clay predicted maps for the different depths, as described in 
Fig. 4. 

For SOC and clay mapping, covariables (predictors) associated with 
relief and a Synthetic Soil Image (SYSI) were used. The relief attributes 
included elevation, slope, aspect, curvatures, valleys, hills, orientation, 
and topographic wetness index as described by Carvalho et al. (2019) 
and Sabetizade et al. (2021). The terrain variables were from a digital 
elevation model (DEM) of the Radar Topography Mission – SRTM 
(USGS, 2018), at 30 m spatial resolution. The SYSI in turn corresponds to 
a mosaic of the bare soil surfaces obtained from the Landsat images 
collection from 1984 to 2020. The SYSI images contain six bands in the 
Vis-NIR-SWIR spectral range (blue, green, red, NIR, SWIR1 and SWIR2) 

and were obtained by applying the Geospatial Soil Sensing System 
(GEOS3), developed by Demattê et al. (2018). 

The Random Forest (RF) algorithm was chosen for spatial prediction, 
as it was reported as the best performing predictive algorithm in SOC 
mapping (Khaledian and Miller, 2020, Zeraatpisheh et al., 2020, Lam
ichhane et al., 2019; Padarian et al., 2020). RF is a nonparametric model 
that performs classification and regression of sets through the con
struction of several decision trees in the training stage, where each tree 
is generated by a random vector (Breiman, 2001). The subdivisions 
within each tree are determined based on predictor variables chosen 
randomly from the set of variables (Coelho et al., 2020). Its strength is 
based on bootstrapping randomization of data and random input se
lection (Sothe et al., 2022) with replacement of the original data and 
internal validation with data not used in the bootstrap procedure 
(Khaledian and Miller, 2020, Zeraatpisheh et al., 2020). The samples (n 
= 2354) were randomly divided into 70% and 30% for calibration and 
validation, respectively. The adjusted coefficient of determination (R2) 
was used as a model evaluation metric. 

For the spatialization of the C sequestration potential of each of the 
minerals that compose the clay fraction (goethite, hematite, gibbsite and 
kaolinite), we used the mineral maps elaborated by Mendes et al. 
(2021), which were obtained by digital soil mapping, using diffuse 
reflectance spectroscopy (Vis-NIR-SWIR) to estimate mineral abundance 
at specific locations and environmental covariates for spatialization. As 
for the clay fraction, the equations described in the point model were 
applied using map algebra, where “Particles ≤ 20 µm (%)” was replaced 
by the abundance map of each mineral at different depths, leaving fixed 
the predicted SOC maps for the different depths. According to Sothe 
et al. (2022) in the use of machine learning models for SOC prediction it 
is possible to use the same model keeping some covariates fixed to 
identify the influence of the variable of interest in the SOC prediction. 

Fig. 8. Carbon saturation potential, C in organic matter associated with the mineral fraction (mOM), saturation deficit and deficit stock associated with clay contents 
at soil depth of 40 to 60 cm. 

H.S. Rodríguez-Albarracín et al.                                                                                                                                                                                                             



Geoderma 436 (2023) 116549

11

Such spatialization will allow us to observe a spatial approximation of 
the individual contribution of the minerals that compose the clay frac
tion in the C sequestration potential, and together with the predictive 
model of this potential obtained from the spatial regression, will help to 
understand the dynamics of the potential of the mineralogy of the clay 
fraction to sequester new carbon. 

3. Results 

3.1. Point modeling of soil carbon sequestration potential 

For the selection of the best fit models of the relationship between 
the response associated with the carbon sequestration potential or po
tential saturation deficit of SOC (Sat-def), potential saturation of C (Sat- 
pot) and CmOM with the explanatory variables related to mineral 
amplitude, the pure spatial autoregressive regression models (PAR), the 
spatial lag model (SLM), the spatial error (SEM), the spatial double 
autoregressive model (SARAR) and the spatial Durbin error (SDEM) 
were used were used, however the latter was excluded from Sat-pot and 
CmOM because a fit was not achieved (Tables 1 and 2). 

Sat-def = potential carbon saturation deficit or carbon sequestration 

potential. A = amplitude of the different minerals AKln (kaolinite), AGt 
(goethite), AHem (hematite), AGbs (gibbsite). 

Where A = amplitude of the different minerals AKln (kaolinite), AGt 
(goethite), AHem (hematite), AGbs (gibbsite). 

Based on the MIT evaluation (Tables 1 and 2), only the SARAR 
model, for each of the dependent variables, satisfied the criteria. Based 
on AIC and r, the SARAR model also performed best in all three models 
for the depth of 0–20 cm (Sat-def: AIC = 6692 y r = 0,56; CmOM: AIC =
6659 y r = 0.60; Sat-pot: AIC = 6587 y r = 0.76) and 80–100 cm (Sat-def: 
AIC = 4429 y r = 0,66; CmOM: AIC = 3734 y r = 0.70; Sat-pot: AIC =
4481 y r = 0.66). For 0–20 cm, the SARAR model of carbon sequestra
tion potential (Sat-def) includes all minerals, whereas, for the latter 
depth, it includes only kaolinite and hematite. CmOM is also explained 
by all minerals at the first depth, and the importance of kaolinite was lost 
in the last layer. On the contrary, Sat-pot at the first depth was only 
explained by kaolinite and hematite, and at the last depth kaolinite, 
gibbsite and hematite were considered. 

Where A = amplitude of the different minerals AKln (kaolinite), AGt 
(goethite), AHem (hematite), AGbs (gibbsite). Pr (>IzI) is related to the 
significance of each variable in the model, with lower values high
lighting greater importance. 

Fig. 9. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), carbon saturation potential (b) and saturation deficit (c) for 40 to 60 cm.  
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Satdef = potential carbon saturation deficit or carbon sequestration 
potential. A = amplitude of the different minerals AKln (kaolinite), AGt 
(goethite), AHem (hematite), AGbs (gibbsite). Pr (>IzI) is related to the 
significance of each variable in the model, with lower values high
lighting greater importance. 

The models for each depth described in the tables 2 and 3 can be 
expressed from the matrix point of view as shown in the following 
equations: 

1) For depth from 0 to 20 cm: 

Csat − def = 0.87Wy − 0.64 + 840AKln − 1264AGbs − 164AGt

+ 612AHem + u; u

= 0.66Wu + ε  

C mOM = 0.88Wy − 0.81 − 278.9AKln + 1283.4AGbs + 164.7AGt

+ 183.2AHem + u; u

= 0.88Wu + ε  

C SatPot = 0.89Wy − 0.46 + 616.6AKln + 824.2AHem + u;
u = 0.71Wu + ε 

2) For depth from 80 to 100 cm: 

Csat − def = 0.82Wy − 1.66 + 600AKln + 127AHem + u;
u = 0.85Wu + ε  

C mOM = 0.94Wy − 1.71 + 720.1AGbs + 66.6AGt + 188.4AHem + u;
u = 0.92Wu + ε  

C SatPot = 0.86Wy − 3.03 + 716.4AKln + 886.4AGbs + 346.4AHem + u;
u = 0.86Wu + ε 

Where, Sat-def = potential carbon saturation deficit or carbon 
sequestration potential, CmOM = C in organic matter associated with 
the mineral fraction, Sat-pot = Potential carbon saturation, A =

amplitude of the different minerals AKln (kaolinite), AGt (goethite), 
AHem (hematite), AGbs (gibbsite), W corresponds to the matrix of 
weights, u is associated with the vector of residuals with spatial 
dependence and ε N(0, σ2I), where I is an identity matrix. 

The spatial modeling results show that the carbon sequestration 
potential (sat-def) for 0–20 cm depth could be explained by the relative 
contents of kaolinite, gibbsite, goethite and hematite (Table 3). Where 
kaolinite and hematite had the largest direct positive impact. On the 
contrary, a direct but negative impact was observed for goethite and 
gibbsite, which could indicate that an increase in the concentration of 
these minerals reduces the C sequestration potential of the soil, however 
these minerals have the highest affinity for organic molecules (Kaiser 
and Zech, 2000; Dos Reis et al., 2014), so they tend to saturate first 
compared to kaolinite and hematite, and stabilize more efficiently the 
sequestered C (Kalbitz et al., 2005; Dos Reis et al., 2014), in that sense, 
such negative impacts could then be translated as the higher concen
tration of these minerals, the greater stabilization of organic molecules 
may occur, that is, higher current COS content and lower potential to 
sequester new carbon. This explains the results of the model for potential 
C saturation (sat-pot, Table 4), corresponding to the theoretical 
maximum of SOC, which in the 0–20 cm depth was only explained by 
kaolinite and hematite, indicating that it is these minerals that have the 
potential to sequester new carbon. 

It is also important to highlight that the CmOM model for the 0 to 20 
cm depth (Table 4) shows greater importance in gibbsite and goethite 
(Fig. 5), due to the potential for stabilization of organic molecules pre
sented by these minerals, which corroborates that these are the ones 
who contribute most to the current carbon, and contrary to the Sat-def 
model (Table 3), the negative impacts were presented in kaolinite, 
since, as mentioned above, the carbon associated with this mineral is 
related to the potential for sequestering new carbon. On the other hand, 
the carbon sequestration potential (sat-def) for the 80 to 100 cm depth 
(Table 3) was mainly explained by the contents of kaolinite and 

Fig. 10. Carbon saturation potential, C in organic matter associated with the mineral fraction (mOM), saturation deficit and deficit stock associated with clay 
contents at a soil depth of 80 to 100 cm. 
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hematite, with the greatest impact of kaolinite (Fig. 5). CmOM at this 
depth (Table 4) was mainly explained by gibbsite, goethite and hema
tite, with greater impact of gibbsite and hematite (Fig. 5). On the con
trary, Sat-pot was explained by kaolinite, gibbsite and hematite with 
higher impact of kaolinite and hematite. It is important to highlight the 
importance of hematite in the carbon sequestration and stabilization 
cycle at the two depths, since in all three models it is a variable of high 
importance (Fig. 5). According to Georgiou et al. (2022) increasing 
mineral-associated C is key to long-lasting C sequestration, and for the 
soils of the study region hematite responds to these additional spaces to 
sequester and stabilize new C along the soil profile. 

In general, the participation of goethite and gibbsite in explaining 
the C sequestration potential (sat-def) was low in the 0 to 20 cm depth 
and null in the 80 to 100 cm depth (Fig. 5), with greater importance of 
kaolinite compared to hematite, whose difference was not so marked for 
the 0 to 20 cm depth. 

3.2. Carbon sequestration potential mapping 

Carbon and clay maps were obtained for the different depths using 
DSM with R2 of 0.6 and 0.7, respectively. Areas with higher clay content 

had a higher carbon sequestration potential (areas in red), that is, the 
minerals that compose this fraction had the potential to retain more 
carbon, and these were related to agricultural areas (Figs. 6 and 13, 
Table 5). On the contrary, areas with more than 15 years under the same 
land use, such as pastures and forests (Figs. 6 and 13, Table 5), had less 
potential for additional carbon sequestration. 

When evaluating the individual contribution of each mineral (Fig. 7), 
it was observed that the zones with the highest C sequestration potential 
in Fig. 6 corresponded to areas that were saturated, highlighting the 
importance of the individual analysis of the minerals that make up the 
clay fraction, because evidently not all of them have the potential to 
sequester new carbon, being kaolinite and hematite those that still have 
space to store new carbon in the 0 to 20 cm depth, which was consistent 
with the result of the spatial regression models in Tables 3 and 4 elated 
to Sat-def and Sat-pot. Spatially, a high C sequestration potential was 
evidenced for kaolinite in the areas related to pasture and agricultural 
mosaics with more than 15 years (Fig. 13, Table 5), and the agricultural 
zone presented a low to null C sequestration potential (Fig. 7, Fig. 13). 
For gibbsite and goethite, zero sequestration potential was observed, 
indicating C saturation since the major contribution of these minerals 
translates into the current C associated with the mineral fraction 

Fig. 11. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), carbon saturation potential (b) and saturation deficit (c) for 80 to 100 cm.  
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(CmOM), confirming their low importance in the Sat-def spatial 
regression model (Fig. 5). On the other hand, areas dominated by he
matite had a medium to high sequestration potential. Areas under 
agriculture and agricultural mosaics with pastures and forests showed 
the highest potential for carbon sequestration by hematite. 

For the 40–60 cm and 80–100 cm depths, an increase in carbon 
sequestration potential was observed compared to the 0–20 cm depth 
(Figs. 8, 10 and 12). Specifically, the increase in potential in relation to 
the first depth was observed in the agricultural zones, from the north and 
southwest of the study area, with a considerable improvement in the 
zones that had mixed pasture and cropping (Fig. 13, Table 5). 

Higher mineral contents were observed in the deeper layers (Figs. 9 
and 11), especially kaolinite. However, the contents of other minerals 
showed a reduction at 40–60 cm and a considerable increase at 80–100 
cm depth, which was reflected in an increase in C sequestration poten
tial. It should be noted that even with the reduction of iron and 
aluminum oxide minerals contents at depth 40–60 cm (Fig. 9), a 
considerable improvement in the carbon sequestration potential of he
matite and kaolinite were observed. A slight improvement in the po
tential of gibbsite and goethite was also observed, where gibbsite 
maintains a low potential in most of the area, with a slight improvement 
in the proximity of pasture, forest and cropping mosaics. The increase in 
C sequestration potential for goethite was observed in areas with crop 
and pasture mosaics. For hematite, low C sequestration potential was 
maintained in the northeastern part of the study area, corresponding to 
areas with more than 15 years in agriculture (Fig. 13, Table 5). 

For 80–100 cm, the results of Sothe et al. (2022) were confirmed, 
showing that the kaolinite and the iron and aluminum oxides were not 
fully saturated (Figs. 10 and 11). C sequestration potential was higher, 
observing an increase in the potential for hematite in the areas under 

agriculture, with an increase in hematite potential observed in the areas 
under agriculture, which at depths 40–60 cm still showed low seques
tration potential. Similarly, an increase in the sequestration potential for 
goethite and gibbsite were observed in the areas with pasture and 
cropping mosaics, maintaining a low potential in the areas with agri
cultural use for more than 15 years (Fig. 13, Table 5). Statistically, the 
point modelling highlighted the importance of kaolinite and hematite in 
the carbon sequestration potential of this depth (Table 3), however, it 
did not consider this contribution of gibbsite and goethite. 

In general, it was observed that as the depth increases, there is a 
greater potential for sequestration of new C (Fig. 12), because there is 
less current C content in the mineral fraction, as Georgiou et al. (2022) 
mention, the greater the depth, the greater the subsaturation of C 
associated with minerals, therefore it is possible to consider that there is 
a potential carbon pool that could be exploited with the inclusion of 
shrub and tree crops whose root system reaches deeper into the soil. 

4. Discussion 

According to Boddey et al. (2010), the analysis of carbon storage 
potential requires the evaluation of deeper soil layers because studies 
from 0 to 100 cm depth reveal 59% more storage in relation to a study 
from 0 to 30 cm. That is, the inclusion of depth allows adequate pre
diction of SOC concentration (Sothe et al., 2022), since at shallower 
depths the mineral particles are more saturated with SOC. Therefore, 
depth allows for improved analysis of SOC storage potential (Hobley 
et al., 2015). This was confirmed in the present study, where with 
increasing depth a higher carbon sequestration potential was observed 
(Fig. 12), due to lower carbon saturation in clay fraction minerals such 
as kaolinite, hematite, goethite and gibbsite (Figs. 7, 9 and 11) and to the 

Fig. 12. Variation of the content of the potential C saturation deficit or C sequestration potential, at different soil depths.  
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increase in the content of these minerals with depth, as they are more 
commonly found in highly weathered soils, with greater homogeneity in 
depth (Berg and Oliveira, 2000) and according to Georgiou et al. (2022) 
the maximum C content associated with minerals depends on the 
amount and type of mineral. 

Ingram and Fernandes (2001), Weil and Brady (2016), indicated the 
importance of clay mineralogy on the potential of a soil to store organic 
carbon, especially in the deeper layers (Gray et al., 2015, Wiesmeier 
et al., 2011). In the present study, the spatial regression models showed 
a clear difference in the minerals contributing to carbon sequestration 
potential at depth 0 to 20 and 80 to 100 cm (Table 2), with low 
contribution of gibbsite and goethite at the deeper depth. However, in 
Figs. 9 and 11, the contribution of goethite and gibbsite in this overall 
contribution of new carbon sequestration that is not seen in the statis
tical model was observed. 

Interpreting the individual contribution of the carbon sequestration 
potential of the clay fraction minerals is difficult due to their coexistence 
(Kirsten et al., 2021). Georgiou et al. (2022) points out the importance of 
generating mathematical models that allow inferring the C associated 
with the mineral fraction, however, their study was based on the limit 
line analysis where the determination of the C saturation potential is 
based on the highest C stocks and C contents in soils with presence of 2:1 
clays and poorly crystalline minerals, which theoretically have higher 
capacity to stabilize C. For the present study this theoretical maximum 
limit was calculated as the potential C saturation based on the equation 
of Feller and Beare (1997) and spatial regression models were used to 
explain this potential C saturation (Sat-pot), the C associated with the 
mineral fraction (CmOM) and the potential for sequestration of new C 

(Sat-def) as a function of the relative abundance of the minerals that 
compose the clay fraction, finding the best fits with the SARAR double 
autoregressive spatial regression model, highlighting that the main 
contributing minerals in the C sequestration potential correspond to 
kaolinite and hematite (Table 3), with a low contribution of goethite and 
gibbsite in the 0 to 20 cm depth (Fig. 5). These minerals have direct 
impacts that indicate that a reduction in their concentration could 
reduce the C sequestration potential of the study area, since they are the 
minerals that contribute most to C stabilization and to the CmOM 
content. 

According to Schaefer et al. (2008), the clay fraction of Brazilian soils 
is dominated by kaolinite and low crystallinity Fe and Al oxides, typi
cally corresponding to gibbsite, hematite, goethite and maghemite 
(Kämpf and Curi, 2003). This low crystallinity of these iron oxides in 
Brazilian soils translates into more effective OM stability than crystalline 
Fe oxides or oxyhydroxides (Schaefer et al., 2008), because they exhibit 
electrostatic attractions and ionic bonds between the hydroxyl groups of 
the oxides and the carboxyl or hydroxyl groups of the OM (Duiker et al., 
2003, De Mastro et al., 2020). In our study area, the presence of parental 
material associated with basalt (Fig. 1) allows locating ferruginous 
minerals of low degree of crystallinity according to Tombácz et al. 
(2004) and Ashton et al. (2016). Such localization coincides with the 
concentration of iron oxides with higher affinity for the MO (Ashton 
et al., 2016), which highlights that the reduction of goethite and gibbsite 
contents affects the stabilized MO, since as observed in the CmOM 
model, these minerals account for approximately 90% of the importance 
in explaining the current C of the mineral fraction (Fig. 5). 

According to Guzmán et al. (1994), goethite usually presents greater 

Fig. 13. Additional variables, Land use history (1985–2015) based on Tayebi et al. (2021) (a), iron oxide (F2O3) (b) and pH in water (c).  
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affinity for OM because it presents a double network of octahedra, where 
Fe+3 occupies only half of the spaces (Bigham et al., 2002). It gives a 
greater specific surface area for this oxide, compared to hematite, which 
presents an occupation of Fe+3 in 66% of the oxygens, reducing its 
specific surface area (Bigham et al., 2002) considerably. Kaiser and 
Guggenberger (2000) indicated that goethite and gibbsite have a high 
density of reactive sorptive sites, allowing more effective organo- 
mineral interactions. Hematite has a denser structure and lower sur
face area compared to goethite, having lower reactivity of hydroxyl 
groups on its surface (Dos Reis et al., 2014). Therefore, carbon had af
finity and preference for goethite (Figs. 7 and 9). Similarly, it was found 
that gibbsite also had higher carbon saturation potential. 

A decrease in pH increases the positive charges of iron oxides, 
increasing OC sorption (Ashton et al., 2016). However, the high pres
ence of kaolinite could generate an increase in the negative charges 
neutralizing the positive charges of the oxides. In turn, it could lead to a 
reduction of stabilized OC (Kirsten et al., 2021), which is evidenced in 
the greater carbon retention potential, being clear the role played by pH 
(Ashton et al., 2016), as it influences the surface charge and therefore 
the adsorption capacity of organic compounds (Saidy et al., 2013). The 
pH control of the protonation and deprotonation of hydroxyl groups 
(Wang et al., 2020). For the study area, the more significant presence of 
kaolinite was related to a high hematite content, especially in the 
eastern region, where pH ranged from strongly acidic (5 to 5.5) to 
moderately acidic (5.6 to 6) (Fig. 13), which could also explain the high 
potential for carbon sequestration in these areas. 

Land use type also influences SOC content due to differences in 
vegetation and C input. Agricultural and highly degraded soils have 
considerable potential to store additional SOC (Wiesmeier et al., 2013, 
Georgiou et al., 2022), as a marked depletion of SOC stocks is observed 
(Paustian et al., 1997, Lal, 2004, Smith, 2004, Follett et al., 2001, 
Padarian et al., 2022). Sothe et al. (2022), reported a higher concen
tration of SOC in crops than in grazing land. Areas with more than 15 
years of agriculture had both the lowest and the highest carbon 
sequestration potential (Table 5), that is, minerals such as goethite and 
gibbsite at depth 0 to 20 cm present a low potential to sequester new 
carbon in the study area and at greater depth the low potential is 
concentrated in these areas with traditional agricultural use. On the 
other hand, at shallower depths, minerals such as hematite and kaolinite 
had a higher sequestration potential, being higher for kaolinite in areas 
of pasture and cropping mosaics, and higher for hematite in areas with 
cropping mosaics of pasture and forest. With increasing depth, unlike 
goethite and gibbsite, kaolinite and hematite had high carbon seques
tration potential in areas with traditional agricultural use. In agricul
tural areas, management practices that favor sequestration are related to 
the promotion of organic inputs, conservation/minimum tillage, con
version of cropland to pasture, introduction of perennials, proper 
management of cultivated peatlands, and organic farming (Sauerbeck, 
2001, Vleeshouwers and Verhagen, 2002, Freibauer et al., 2004, Lal, 
2004, Johnson et al., 2007, Smith, 2012). Rabbi et al. (2015) and Ashton 
et al. (2016), reported that conversion of cropland to grassland could 
increase carbon sequestration, that coincides with the observed results. 

Afforestation and pasture improvements could contribute with soil 
carbon storage increase (Zeraatpishe and Khormali, 2012, Nave et al., 
2013). It has also been reported when conversion from forest to 
managed pasture and from cropland to pasture occurred (Poeplau and 
Don, 2013). The areas under exclusively forest use presents low 
sequestration potential and the minerals such as goethite were highly 
saturated. On the other hand, areas with cropping and pasture mosaics 
presents a medium potential for carbon sequestration. However, it was 
evident that as the depth increases, the carbon sequestration potential 
improves in the forest uses, especially in agriculture and forest mosaics. 
For Minasny et al. (2013), historical land use is a variable that influences 
the explanation of carbon concentrations in deeper soil layers. Land use 
change can favor carbon sequestration because it results in a variation of 
organic compounds reaching the soil and mechanization can reactivate 

the carbon cycle, where bacteria in the environment take advantage of 
the released carbon, however, there are residues of this microbial 
decomposition that can be retained by minerals (Kirsten et al., 2021). 

Acosta-Martinez et al. (2004) concluded that continuous mono
culture systems had a negative impact on soil function and sustain
ability. Cultivation and tillage reduce and change the distribution of 
SOC, while appropriate crop rotation can increase or maintain the 
quantity and quality of SOM, improving soil chemical and physical 
properties (Liu et al., 2006). Crop intensity or frequency affects SOC 
storage by modifying the amount of time the soil is supporting a crop, 
thereby increasing annual production and C input to the soil (Ogle et al., 
2005). Areas with the same land use for more than 15 years were those 
with higher saturation of minerals, such as goethite and gibbsite (higher 
affinity for SOM), as well kaolinite and hematite (low affinity for SOM). 
However, it was clear that those areas with agriculture and pasture 
mosaics, and pasture and forest mosaics, had the greater potential to 
retain new carbon, and its potential increases with soil depth (Table 5). 

These areas with higher retention potential due to mineralogy are 
key to promote CO2 sequestration by agroforestry and silvopastoral 
systems, because as evidenced, it is important to exploit the potential of 
goethite and gibbsite at depth (Fig. 11, Table 5), since, as indicated by 
Georgiou et al. (2022), the deeper the soil minerals are, the less satu
rated they become. Additionally, crop rotation or cover crops to exploit 
the potential of the most superficial layers of the soil is also important. 
The results presented could contribute to climate change mitigation 
strategies, as described by Minasny et al. (2017), who pointed out that at 
the 21st Conference of the Parties to the United Nations Framework 
Convention on Climate Change in Paris (COP21) the strategy “4 per 
thousand soils for food security and climate” was unveiled. This strategy 
aims to increase global soil organic matter stocks by 4 per 1000 (or 
0.4%) per year considering soil organic carbon sequestration as a 
possible solution to mitigate climate change by taking atmospheric CO2 
and converting it into long-lived soil carbon. 

The land uses described correspond to a historical use analysis for a 
period of 30 years. The number 50 in the heading relates to the middle of 
the period under this use. The highlighted numbering indicates the 
largest areas with high, medium and low carbon saturation potential. 

5. Conclusions 

The C sequestration potential prediction models obtained in the 
present study confirm the importance of the minerals that compose the 
clay fraction in the C sequestration potential of the soil. The prediction 
of this potential was fitted to a spatial regression model SARAR (Spatial 
AutoRegressive-AutoRegressive model) for depths of 0 to 20 and 80 to 
100 cm, where at a depth of 0 to 20 cm the sequestration potential is 
explained by the content of kaolinite, hematite, goethite and gibbsite, 
with kaolinite and hematite being the most important explanatory var
iables. On the other hand, goethite and gibbsite had a direct but negative 
impact, indicating that an increase in the concentration of these min
erals reduces the potential for sequestration of new C, due to the affinity 
they have with organic molecules, so they tend to saturate reducing their 
potential to store new carbon, but translates into greater stability of 
organic molecules and higher current COS content. For the 80 to 100 cm 
depth, the prediction of carbon sequestration potential was explained by 
the content of kaolinite and hematite, with greater importance of 
kaolinite. Hematite is a mineral of importance in carbon sequestration 
and stabilization since it was a variable of high importance in explaining 
mineral-associated C (CmOM), potential C saturation (Sat-pot) and C 
sequestration potential (Sat-def) at different depths. 

Soil carbon sequestration potential by mineralogy is strongly influ
enced by land use. Areas of pasture and crop on soils with high kaolinite 
and hematite content presented greater potential to sequester carbon. In 
addition, areas with lower pH and higher kaolinite and hematite content 
also have a high potential for carbon sequestration, which can be 
enhanced by land use change. 
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Gibbsite and goethite had a higher sorption power of organic mole
cules; therefore, they had a lower potential for sequestration of new 
carbon in areas with the same land use for more than 15 years, because 
they are the first minerals to become saturated, especially in the surface 
layers. However, their potential increases in cropping and pasture areas 
at greater depths because the concentration of SOM was lower. Soils at 
greater depths had the greatest potential for carbon sequestration and 
could be key for climate change mitigation strategies. 
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Kögel-Knabner, I., Guggenberger, G., Kleber, M., et al., 2008. Organo-mineral associa- 
tions in temperate soils: integrating biology, mineralogy, and organic matter chem- 
istry. J. Plant Nutr. Soil Sci. 171, 61–82. 

Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food 
security. Science 304 (2004), 1623–1627. 
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Wiesmeier, M., Barthold, F., Blank, B., Kögel-Knabner, I., 2011. Digital mapping of soil 
organic matter stocks using Random Forest modeling in a semi-arid steppe 
ecosystem. Plant Soil 340 (1–2), 7–24. 

Wiesmeier, M., Hubner, R., Barthold, F., et al., 2013. Amount, distribution and 
drivingfactors of soil organic carbon and nitrogen in cropland and grassland soils 
ofsoutheast Germany (Bavaria). Agr Ecosyst Environ 176, 39–52. 

Yang, L., Li, X., Shib, J., Shen, F., Qi, F., Gao, B., Chen, Z., Zhu, A., Zhou, C., 2020. 
Evaluation of conditioned Latin hypercube sampling for soil mapping based on a 
machine learning method. Geoderma 369 (2020), 114337. 

Yang, Y., Shen, Z., Bisset, A., Viscarra Rossel, R., 2021. Estimating soil fungal abundance 
and diversity at a macroecological scale with deep learning spectrotransfer 
functions. Soil Discuss. [preprint], doi: 10.5194/soil-2021-79, in review.  

Zeraatpishe, M., Khormali, F., 2012. Carbon stock and mineral factors controlling soil 
organic carbon in a climatic gradient, Golestan province. J. Soil Sci. Plant Nutr. 12 
(4), 637–654. 

Zeraatpisheh, M., Jafari, A., Bodaghabadi, M.B., Ayoubi, S., Taghizadeh-Mehrjardi, R., 
Toomanian, N., Kerry, R., Xu, M., 2020. Conventional and digital soil mapping in 
Iran: past, present, and future. Catena 188, 104424. 

H.S. Rodríguez-Albarracín et al.                                                                                                                                                                                                             

http://refhub.elsevier.com/S0016-7061(23)00226-4/h0510
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0510
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0515
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0515
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0515
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0515
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0520
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0520
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0520
https://doi.org/10.1038/nrmicro1490
https://doi.org/10.1038/nrmicro1490
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0530
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0530
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0535
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0535
https://www.frontiersin.org/article/10.3389/feart.2019.00257
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0545
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0545
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0545
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0550
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0550
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0550
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0555
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0555
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0555
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0560
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0560
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0560
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0565
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0565
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0565
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0570
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0570
http://refhub.elsevier.com/S0016-7061(23)00226-4/h0570

	Potential of soil minerals to sequester soil organic carbon
	1 Introduction
	2 Methodology
	2.1 Study area
	2.2 Point modeling of soil carbon sequestration potential
	2.2.1 Carbon saturation potential
	2.2.2 Spatial regression analysis

	2.3 Spatialization of carbon sequestration potential

	3 Results
	3.1 Point modeling of soil carbon sequestration potential
	3.2 Carbon sequestration potential mapping

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Funding
	References


