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ARTICLE INFO ABSTRACT

Handling Editor: Jingyi Huang The capacity of soil to sequester carbon (C) is a key process that promotes the reduction of CO in the atmo-
sphere. Soils can absorb as much as 20% of anthropogenic carbon emissions, which can contribute to mitigate
climate change. This capacity relies on the organo-mineral association, which includes different minerals, Fe and
Al oxides, which have a critical soil organic carbon (SOC) sorption surface. Based on an equation of the potential
C saturation deficit of fine soil particles (<20 pm/silt and clay fractions) for tropical regions, this study inves-
tigated the SOC sequestration potential of the clay fraction for soils in Piracicaba region, Sao Paulo State, Brazil
as influenced by the clay minerals. This potential was fitted to a spatial regression model for soil depths 0—20 cm
and 80 to 100 cm. In the surface layer, the sequestration potential was mostly explained by the relative abun-
dance of soil minerals (Kaolinite, Hematite, Goethite and Gibbsite) determined using vis-NIR-SWIR spectroscopy.
A direct relationship was observed with Goethite and Gibbsite, indicating that low concentrations would reduce
the sequestration potential. At 80 to 100 cm depth, Kaolinite and Hematite explained most variation in SOC
sequestration potential. Additionally, the C associated with the mineral fraction and the C saturation potential as
a function of minerals were modeled and a strong importance of hematite in the C sequestration and stabilization
cycle was identified at both depths. The individual mineral contribution to SOC sequestration potential was also
mapped, which identified high contributions of goethite and gibbsite for deep soil layers. The influence of land
use on the carbon sequestration potential of minerals was observed, with the greatest potential being found in
areas with pasture and cropping mosaics and grassland and forest mosaics, with a high presence of kaolinite and
hematite. These minerals have a greater potential for carbon sequestration at greater depths and, therefore, could
be critical in climate change mitigation strategies.
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1. Introduction

The ability of soil to sequester carbon is considered a cost-effective
and plausible method to reduce the concentration of CO5 in the atmo-
sphere (Houghton, 2003, Kimble et al., 2003). This is because global
soils have the potential to absorb about 20% of anthropogenic carbon
emissions (Yang et al., 2021). Therefore, carbon sequestration is a
phenomenon that can help to partially mitigate climate change
(Padarian et al., 2022), as for greenhouse gas emissions (Minasny et al.,

* Corresponding author.

2017).

Hassink (1997) and Loveland and Webb (2003) proposed that soils
have a limited capacity to retain carbon, which is based on the reactive
capacity of mineral surfaces (Churchman et al., 2020; Prout et al., 2021).
Therefore, it is understood that the clay fraction has a finite carbon
storage capacity (Diekow et al., 2005), and the search for this storage
limit justifies the determination of carbon sequestration potential (Six
etal., 2002; Stewart et al., 2008; Chung et al., 2008), which also depends
on the limited potential of the soil to stabilize soil organic carbon (SOC)

E-mail addresses: hsrodrigueza@usp.br (H.S. Rodriguez-Albarracin), jamdemat@usp.br (J.A.M. Dematté), narosin@usp.br (N.A. Rosin), agedarghanco@unal.edu.

co (A.E.D. Contreras), neli.silvero@usp.br (N.E.Q. Silvero), cepcerri@usp.br (C.E.P. Cerri),

(M. Tayebi).

https://doi.org/10.1016/j.geoderma.2023.116549

wanderson.mendes@zalf.de (W.S. Mendes), mtayebi@ufl.edu

Received 22 November 2022; Received in revised form 25 May 2023; Accepted 26 May 2023

Available online 2 June 2023

0016-7061/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:hsrodrigueza@usp.br
mailto:jamdemat@usp.br
mailto:narosin@usp.br
mailto:aqedarghanco@unal.edu.co
mailto:aqedarghanco@unal.edu.co
mailto:neli.silvero@usp.br
mailto:cepcerri@usp.br
mailto:wanderson.mendes@zalf.de
mailto:mtayebi@ufl.edu
www.sciencedirect.com/science/journal/00167061
https://www.elsevier.com/locate/geoderma
https://doi.org/10.1016/j.geoderma.2023.116549
https://doi.org/10.1016/j.geoderma.2023.116549
https://doi.org/10.1016/j.geoderma.2023.116549
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2023.116549&domain=pdf
http://creativecommons.org/licenses/by/4.0/

H.S. Rodriguez-Albarracin et al.

against microbial mineralization.

The SOC stabilization is based on selective preservation associated
with recalcitrance or chemical resistance (Singh et al., 2018). It is also
related to the spatial inaccessibility of SOM by occlusion in soil aggre-
gates, especially in microaggregates (Hoffland et al., 2020). Further-
more, the interaction with mineral surfaces favors the formation of
organic-mineral complexes (Sollins et al., 1996, Von Liitzow et al.,
2006), especially with clay minerals and metal ions (Oades, 1988,
Arrouays et al., 2006, Singh et al., 2018).

Hassink (1997) indicated that the potential carbon saturation is
associated with silt and clay particles. Angers et al. (2011) also pointed
out that fine-textured soils have a higher retention capacity than sandy
soils, due to a larger specific surface area available for organo-mineral
interactions present in the silt and clay fractions (Stewart et al.,
2008). Similarly, Zeraatpishe and Khormali (2012) observed that the
SOC can be adsorbed by coarse aggregates, fine aggregates, and particles
smaller than 0.053 mm. Brodowski et al. (2006) found that particles
such as clay and silt alone cannot retain much SOC, and more than 90%
is stored in the aggregates, which protects SOC from microbial decom-
position (Hoffland et al., 2020, Baldock and Skjemstad, 2000, Liitzow
et al., 2006).

The SOC dynamics is closely related to the soil development process
and, therefore, to its formation factors (Hobley et al., 2015). There are
active factors, such as climate and organisms, and passive factors, such
as parent materials, relief, and time. To make predictions of the terres-
trial carbon cycle, it is necessary to understand the complete processes
related to the sequestration and release of carbon (Marschner et al.,
2008).

Ingram and Fernandes (2001) and Weil and Brady (2016) indicated
the importance of mineralogy on the potential for SOC storage, espe-
cially soils in the deeper layers (Gray et al., 2015, Wiesmeier et al.,
2011). In contrast, land use presents a more significant influence in the
superficial layers (Adhikari et al., 2014, Hobley et al., 2015). For Ashton
et al. (2016), clay content alone is not related to the increase or decrease
of carbon content. The concentration is influenced by soil mineralogy
and the geochemistry of the soil, thus depending on the presence of clay
minerals and iron oxides of high specific surface area and pH. The clay
fraction is key to carbon sequestration because it involves different
minerals and varying amounts of pedogenic Fe and Al oxides (Yang
etal., 2021; Kirsten et al., 2021; Prout et al., 2021). Minerals such as iron
and aluminum oxides, specifically goethite and gibbsite are recognized
as critical carbon sorption surfaces (Kaiser and Zech, 2000; Dos Reis
et al., 2014).

Feng et al. (2005) highlighted the adsorption of anionic cations by
soil organic matter through ionic linkages related to hydrogen, cation
and anion exchange, ligand exchange and cation bridges, likewise
electrostatic attractions or van der Waals linkages alone can occur. Soil
oxides, oxyhydroxides and hydroxides present electrostatic attractions
and ionic linkages between the hydroxyl groups of the oxides and the
carboxyl or hydroxyl groups of the SOM, with additional strong re-
lationships between iron manganese and humic substances (De Mastro
et al., 2020). This adsorption of SOM by minerals favors SOC stabiliza-
tion, reducing microbial mineralization (Kalbitz et al., 2005), due to the
specific surface area of these minerals and their surface charge that fa-
vors these linkages and stabilizes SOM.

Interactions of the reactive phases of poorly crystalline Fe and Al
oxides with SOM are an essential mechanism in the long-term stabili-
zation of SOC (Kogel-Knabner et al., 2008, Percival et al., 2000). Ac-
cording to Weber et al. (2006), the biogeochemical cycling of iron is
closely related to the dynamics of SOM. Lalonde et al. (2012) noted that
about 21.5% of global SOC is associated with reactive forms of Fe.
Crystalline Fe and Al oxides present reactive sites on the surface that can
adsorb SOC (De Mastro et al., 2020), however Duiker et al. (2003) and
De Mastro et al. (2020) observed that Fe oxides of low degree of crys-
tallinity stabilize SOM more effectively than crystalline Fe oxides or
oxyhydroxides, because they present higher specific surface area and
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density of hydroxyl sites compared to crystalline ones, increasing their
chelation capacity (Wen et al., 2019). Zeraatpishe and Khormali (2012),
to the contrary, reported that amorphous and crystalline iron oxides and
hydroxides retain 50-70% of total carbon.

Poorly crystalline Fe minerals have a specific surface area of around
800 m? g7}, for example, for ferrihydrite, higher than crystalline forms
of Fe found around 200 m? g~1, as in the case of goethite (Eusterhues
et al., 2005). According to Churchman and Velde (2019), SOC shows a
preference for weakly crystalline oxides as well as Fe and Al silicates.
Bonds with 2:1 phyllosilicates are going to depend on their relative
surface reactivities. Therefore, minerals such as smectite that are more
reactive present greater potential to retain carbon (Churchman et al.,
2020). However, a more significant effect occurs with poorly crystalline
Fe oxyhydroxides (Rasmussen et al., 2007). The combined effect of sil-
icates and oxides is involved in SOC stabilization, for example, ferri-
hydrite and goethite can favor the sorption capacity of kaolinite (De
Mastro et al., 2020).

Kirsten et al. (2021) indicated that clay minerals and oxyhydroxides
(pedogenic metal oxides) are the most reactive and control the persis-
tence of SOC. However, most studies did not explicitly evaluate the
contribution of clay minerals on SOC. For example, Weismeier et al.
(2013) estimated the SOC sequestration potential of silt and clay parti-
cles, in soils from Germany, without specifying the clay mineral type.
Ashton et al. (2016) analyzed SOC concentrations in different parent
materials and clay mineralogies, evaluating total concentrations without
determining the specific contribution of each mineral. Yang et al. (2021)
evaluated the spatio-temporal dynamics of carbon adsorption and
release in aggregates of a transparent smectite clay, also relating enzy-
matic decomposition, through 4D imaging on a microfluidic chip. It
should be noted that this study was not performed on a specific soil.
Kirsten et al. (2021) determined the contribution of kaolinite, gibbsite,
goethite, and hematite to carbon storage in soils under forests and
agricultural lands, evaluating only the variation of carbon and clay
mineral concentrations, but keeping the mineral types invariant.

Mapping the carbon sequestration potential that clay minerals
composing the clay fraction has is important for the understanding of
their dynamics and soil management (Padarian et al., 2022), remem-
bering that SOC contents and their stable forms vary in relation to the
amount and type of mineral (Yang et al., 2021; Kirsten et al., 2021; Prout
etal., 2021; Dos Reis et al., 2014). However, in general, soil mapping has
limitations in terms of spatial delimitation (Teng et al., 2018), and de-
pends on the estimation and description of their properties. These con-
ventional methods require complex laboratory chemical analysis and
expertise for their description, incurring more time and costs (Shi et al.,
2015), and are generally developed with limited information on quan-
tity, volume and spatial coverage (Soil Survey Staff, 2017).

Information systems and remote sensing techniques have facilitated
the acquisition of spatial information, specifically by digital soil map-
ping (DSM) approaches, which combine point soil data with statistically
correlated auxiliary data (covariates) (McBratney et al., 2003), mainly
through machine learning techniques (Padarian et al., 2019). Addi-
tionally, reflectance spectroscopy is a technology that has improved
DSM (Teng et al., 2018), as the evaluation of infrared spectral curves
provides useful indicators to map, classify and monitor different soil
properties (Di Iorio et al., 2019), as is the case of mineral quantification
(Mendes et al., 2021).

This study has the objective of analyzing the individual contribution
of each mineral that composes the clay fraction in the sequestration
potential of new SOC, through the quantification, modeling and map-
ping of this potential in different pedogenetic soils of Brazil, using
remote sensing products and the equation of Feller and Beare (1997) to
obtain the theoretical SOC sequestration potential. Considering the
importance of the minerals that compose the clay fraction and that this
fraction in tropical soils is dominated by kaolinite, gibbsite, hematite
and goethite (Kampf and Curi, 2003, Schaefer et al., 2008) and the high
sorption power of Fe and Al oxides for organic molecules, it is expected
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Fig. 1. Location of the study area (Piracicaba region, Sao Paulo state). The geology map is from Bonfatti et al. (2020).
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Fig. 2. Methodological scheme of the point modeling of the carbon sequestration potential of minerals that compose the clay fraction. sat-pot: potential C saturation,
sat-def: C saturation deficit, CmOM cur: actual concentration of C in mineral-associated organic matter, Gt: goethite, Hem: hematite, Gbs: gibbsite, Kln: kaolinite, A:
relative abundance of soil minerals.

that the SOC sequestration potential is directly related to the concen- approximately 2,598 km? (Fig. 1). The climate of the region, according
tration of these minerals. to the Koppen system, is classified as subtropical Cwa, with a dry winter
and a rainy summer, with an average annual temperature ranging from

2. Methodology 20 to 22.5° C and annual rainfall between 1200 and 1400 mm (Alvares
et al., 2013). In relation to the topography, undulating highlands and

2.1. Study area rolling hills with altitudes ranging from 450 to 950 m are characteristic.
Agricultural land uses such as sugarcane and pasture are dominant

The study area is in Piracicaba region, Sao Paulo State, Brazil, with under no-till and conventional tillage management systems. The main
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Table 1

Fitted spatial regression models and its related statistics for potential saturation
deficit of SOC (Sat-def). A = autoregressive parameters, p = spatial autocorre-
lation coefficient, r = correlation coefficient, MIT = Moran Index test.

Model A p AIC r MIT Explanatory
variables
0-20 cm
PAR 0.98 6848 0.51 6.41E'® Sat-def-a
(2.22F
16)
SEM 0.97 6708 0.56  2.15E% AKln + AGbs +
(2.22F AGt + AHem
16)
SLM 0.95 6720 0.55 1.53E1° AKIn + AGbs +
(2.22E AGt + AHem
16)
SLMA 0.97 6700 0.56  9.90E° AKIn + AGbs +
(2.22E" AGt + AHem
16)
SARAR 0.87 0.66 6692 0.56 0.39407  AKIn + AGbs +
(7.53E  (7.18E AGt + AHem
13) 04)
SDEM 0.97 6701 0.56  2.98E% AKIn + AGbs +
(2.22E" AGt + AHem
16)
80-100 cm
PAR 0.99 4520  0.62  2.00E'° Sat-def-c
(2.22E
16)
SEM 0.98 4455  0.65  1.98E1° AKIn + AGbs +
(2.22E AGt + AHem
16)
SLM 0.98 4445  0.65 1.65E%° AKIn + AGbs +
(2.22E AHem
16)
SLMA 0.96 4443 0.65 3.98E% AKIn + AGbs +
(2.22E AGt + AHem
16)
SARAR 0.82 0.85 4429  0.66 0.37 AKln + AHem
(4.88E-  (1.21E
02) 02)
SDEM 0.98 4449 065 1.158% AKIn + AGbs +
(2.22E" AGt + AHem
16)

soil types are Cambisol, Gleysol, Ferralsol, Nitosol, Lixisol, Leptsol,
Arenosol and Planosol, according to the World Reference Base (IUSS
Working Group WRB, 2015). Geologically, there are diverse parent
materials, such as siltstones, tillites, varvites, conglomerates, sand-
stones, limestones, siltstones, flint, dolomite, siltite, pyrombetumino-
site, schists, diabase, and basalt (Bonfatti et al., 2020).

The soil observations used are from the Brazilian Soil Spectral Li-
brary (BSSL) (Dematte et al., 2019). A total of 2354 observations from
0 to 20, 40 to 60, and 80 to 100 cm depths were used (Fig. 1). The soil
organic carbon (SOC) content and particle size were analyzed by the
Walkey-Black method (wet digestion) (Walkey and Black, 1934) and the
hydrometer method (Bouyoucus and John, 1962), respectively.

2.2. Point modeling of soil carbon sequestration potential

2.2.1. Carbon saturation potential

Hassink (1997) proposed the following equation to determine the C
saturation potential of fine soil particles (<20 pm/silt and clay
fractions):

Csatpot = 4.09 + 0.37 * Particles < 20 um (%)

where Cgarpor corresponds to the potential carbon saturation (mg
g 1), referred to as the theoretical maximum SOC that is stabilized in
fine particles and allows estimating the SOC storage potential (Fujisaki
et al., 2018). However, considering the study area, the modified
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Table 2

Fitted spatial regression models and its related statistics for C in organic matter
associated with the mineral fraction (CmOM) and Potential carbon saturation
(Sat-pot). A = autoregressive parameters, p = spatial autocorrelation coefficient,
r = correlation coefficient, MIT = Moran Index test.

Model A p AIC r MIT Explanatory

variables

C in organic matter associated with the mineral fraction (CmOM)

0-20 cm
PAR 0.98 6823.3  0.56 0 CmOM-a
(2.22E
16)
SEM 0.99 6700.3  0.59 0 AKln + AGbs +
(2.22E AGt + AHem
16)
SLM 0.98 6695.5 0.59  2.87E AKln + AGbs +
(2.22E 15 AGt + AHem
16)
SLMA 0.98 6693.1 0.59  2.31E AKln + AGbs +
(2.22E n AGt + AHem
16)
SARAR 0.88 0.88 6659.1 0.60 0.1723  AKln + AGbs +
(0.015)  (0.013) AGt + AHem
80-100 cm
PAR 0.99 3895.2  0.64 0 CmOM -c
(2.22E
16)
SEM 0.99 3783.8  0.68 0 AGbs + AGt +
(2.22E AHem
16)
SLM 0.98 3783.7  0.67 0 AGbs + AGt +
(2.22E AHem
16)
SLMA 0.98 3778.9  0.68 0 AGbs + AGt +
(2.22E AHem
16)
SARAR 0.94 0.92 3734.3 0.70  5.05E AGbs + AGt +
(1.59E-  (1.60E 02 AHem
06) 04)
Potential carbon saturation (Sat-pot)
0-20 cm
PAR 0.99 7053.1  0.65 0 Sat-pot-a
(2.22E
16)
SEM 0.99 6620 0.75 0 AKln + AHem
(2.22E
16)
SLM 0.89 6623.9 074  1.15E AKln + AHem
(2.22E 14
16)
SLMA 0.98 6610.6  0.43  4.68E AKln + AHem
(2.22E n
16)
SARAR 0.89 0.71 6586.9 0.76 0.28 AKln + AHem
(2.22E  (1.05E
16) 07)
80-100 cm
PAR 0.99 4711.8  0.75 0 Sat-pot-c
(2.22E
16)
SEM 0.99 4517.5  0.79 0 AKln + AGbs +
(2.22E AHem
16)
SLM 0.98 4501.1 079  1.57E AKln + AGbs +
(2.22E 08 AHem
16)
SLMA 0.99 45342 0.79 0 AKIn + AGbs +
(2.22E AHem
16)
SARAR 0.86 0.86 4481.5 0.66 0.37 AKIn + AGbs +
(8.54E-  (9.14E AHem
05) 06)
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Table 3
Parameters of the SARAR spatial regression model for depths 0 to 20 cm and 8 to 100 cm for potential saturation deficit of SOC (Sat-def).
Coefficients Estimate Asymptotic z value Pr(>|z|) Impact Direct Impact
Std. Error p-value
0-20 cm
(Intercept) —0.64 0.89 —-0.72 0.47
AKln 840 142 5.92 3.26E%° 845 1.90E%°
AGbs -1264 376 -3.35 0.000786 -1272 0.000563
AGt ~164 40 ~4.08 4.48E%° -165 2.94E%°
AHem 612 90 6.80 1.02™! 616 6.10E™3
80-100 cm
(Intercept) —1.66 1.28 -1.30 0.19
AKln 600 101 5.94 2.92E%° 611 2.72E%8
AHem 127 66.9 1.90 0.05 130 3.35E%2
Table 4

Parameters of the SARAR spatial regression model for depths 0 to 20 cm and 8 to 100 cm for C in organic matter associated with the mineral fraction (mOM) and
Potential carbon saturation (Sat-pot).

Coefficients

Estimate Asymptotic z value Pr(>|z|) Impact Direct Impact
Std. Error p-value
C in organic matter associated with the mineral fraction (mOM)
0-20 cm
(Intercept) —0.81 1.41 —0.57 0.57
AKln —278.9 137.1 —2.03 0.041 —283.7 0.061
AGbs 1283.4 364.8 3.52 0.0004 1305.4 0.0007
AGt 164.7 38.4 4.29 1.75E%° 167.6 8.94E%¢
AHem 183.2 85.9 213 0.032 186.3 0.028
80-100 cm
(Intercept) -1.71 1.78 —0.95 0.34
AGbs 720.1 234.1 3.07 0.002 739.8 0.003
AGt 66.6 22.9 291 0.003 68.4 0.009
AHem 188.4 57.8 3.26 0.001 193.6 0.0009
Potential carbon saturation (mg g ') (Sat-pot)
0-20 cm
(Intercept) —0.46 1.3 —-0.35 0.72
AKln 616.6 121.6 5.07 3.95£%7 621.6 4.95E°7
AHem 824.2 65.9 12.5 2.22E7¢ 830.9 2.22E°
80-100 cm
(Intercept) —3.03 1.15 —2.61 0.009
AKln 716.4 110.8 6.47 9.98E™! 729.5 0.0002
AGbs 886.4 385.4 2.30 0.021 902.7 0.035
AHem 346.4 78.4 4.42 1.004E° 352.8 6.36E°
| |
A Hematite A Hematite
| | E—
o A Goethite «» A Goethite
= | 2
5 s E—
~ AGibbsite ” A Gibbsite
| —
| |
A Kaolinite A Kaolinite
|

0.0 10.0 20.0 30.0 40.0 50.0

Importance (%)
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mSat-pot " CmOM = Sat-def

80.0
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Fig. 5. Importance of the explanatory variables of the SARAR spatial regression model for depths 0 to 20 cm and 8 to 100 cm for the potential carbon saturation
deficit or carbon sequestration potential (sat-def), C in organic matter associated with the mineral fraction (CmOM) and Potential carbon saturation (sat-pot).
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Fig. 6. Carbon saturation potential, C in organic matter associated with the mineral fraction (mOM), saturation deficit, and deficit stock associated with clay contents

at soil depth of 0 to 20 cm.

equation by Feller and Beare (1997) for tropical soils was used, as it
included samples of Brazilian clay soils with iron and aluminum oxy-
hydroxides, some located in our study area (Fig. 2):

Csat-pot = 3.2 + 0.29 * Particles < 20 um (%) (r = 0.95, p < 0.001)

In this study, the value of the percentage of fine soil particles (par-
ticles < 20 um (%)) was replaced by the percentage of clay. The silt
fraction, both coarse (20-53 pm) and fine fraction (2-20 um), was not
used in this study, as it was reported that the silt fraction of highly
weathered soils with high contents of kaolinite and iron and aluminum
oxides store a small amount of carbon, representing about 4.8% of the
total C content (Rodrigues et al., 2022). Fig. 2 shows the methodological
sequence of the point modeling to determine the C sequestration po-
tential and to generate an equation to predict this potential based on
spectral information associated with the minerals of the clay fraction.

The determination of the C saturation deficit requires the actual
concentration of C in the fine soil particles (<20 pm). For this, 35
representative soil samples were selected from the study area, based on
the conditioned Latin hypercube sampling method, which corresponds
to a stratified random sampling procedure where the selected samples
follow multivariate characteristics according to the indicated covari-
ables (Yang et al., 2020). Here, the Soil Synthetic Image (SYSI), soil type
and variability in clay and C content were considered as covariates.

In these representative samples, fractionation was performed to
quantify the C in particulate organic matter and the C in organic matter
associated with the mineral fraction (mOM) (Cotrufo et al., 2019)
following the methodology described by Jindaluang et al. (2013). The
soil was dispersed using 5% sodium hexamethasphate solution and
considering the low contribution of the coarse and fine silt fraction to
the total carbon storage described by Rodrigues et al. (2022) the sepa-
ration of sand and clay/silt faction was performed by 53 um sieving.
Subsequently, a linear regression model based on the total SOC content

and mOM was developed to predict the C content of mOM in the
remaining samples, with an R? fit of 0.98 (Fig. 3). Therefore, the C
saturation deficit, corresponds to the expression:

Csat»def = Csatpot' (0-8966*50(: total + 0-0773)

Subsequently, the carbon reserve or stock of this difference is
calculated from this difference, using the Benites et al. (2007) equations:

SOC —stock = (SOC x D x BD) x 10

Where: SOC-stock = Soil Organic Carbon Stock (g rn’z), SOC = Soil
Organic Carbon content (g kg_l), D = soil thickness (cm), BD = bulk
density (g em ™). The bulk density is calculated from:

BD(g cm™) = 1.5688 — 0.0005 x clay (gkg™') — 0.0090
x SOC (gkg™)

2.2.2. Spatial regression analysis

As pointed out by Marschner et al. (2008), predictions of SOC storage
potential require an understanding of the processes related to SOC
sequestration and release. Several authors (Hassink, 1997; Yang et al.,
2021; Kirsten et al., 2021), highlighted the importance of minerals
associated with the clay fraction in C sequestration because they involve
variable amounts of minerals that have an affinity with organic mole-
cules, according to the interaction on their surfaces that favors the for-
mation of organic-mineral complexes (Sollins et al., 1996, Von Liitzow
et al., 2006), reflecting in higher stability of SOC (De Mastro et al.,
2020). Thus, this study focused on specifically demonstrating the
response of variability in mineralogy on SOC sequestration potential;
therefore, regression models were built to predict the theoretical po-
tential SOC saturation deficit (Sat-def), potential C saturation (Sat-pot),
and C in mineral-associated organic matter (CmOM), each as a function
of the mineral contents that make up the clay fraction. According to
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Areas expressed in m? with high, medium and low potential saturation of COS according to historical land use, type of mineral and soil depth A) from 0 to 20 cm, B) from 40 to 60 cm, C) from 80 to 100 cm.

Depth  Mineral Cretention Agriculture Agriculture Agriculture Agriculture +  Agriculture50  Agriculture50 Forest Forest + Forest50 + forest50 Pasture Pasture50 + Urban Water

potential -+ Forest + Pasture pasture + -+ forest + pasture pasture agriculture + pasture agriculture + road
forest
A Kaolinite Low 52396.6 465.6 262.7 23562.2 20265.8 38032.0 4393.6 1.6 7323.5 215.1 15.9 1842.2 12186.4 1802.7
Medium 13677.1 42.0 146.2 6874.3 3763.8 29507.4 473.8 0.4 858.5 19.2 17.6 2106.3 1782.6 36.8
High 7360.7 19.5 104.4 2856.0 1661.7 19954.7 201.0 0.0 325.6 4.5 16.4 1649.2 648.8 15.6
Goethite Low 73434.3 527.1 513.4 33292.5 25691.2 87493.8 5068.4 2.0 8507.6 238.7 50.0 5597.7 14617.8 1855.1
Medium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
High 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hematite Low 66288.9 485.9 460.3 30888.7 23123.2 77702.7 4761.1 2.0 8002.5 232.5 43.2 4990.3 14130.4 1728.4
Medium 3688.8 17.2 37.8 1507.7 1270.6 6256.7 174.5 0.1 275.2 3.5 5.7 495.5 284.7 29.9
High 3456.6 24.0 15.2 896.1 1297.4 3534.7 132.9 0.0 229.9 2.7 1.1 111.9 202.7 96.8
B Kaolinite Low 71.4 12.8 6.2 163.2 81.5 133.5 15.0 0.0 28.6 0.9 0.0 9.5 123.6 107.7
Medium 48898.5 435.4 341.2 25196.8 19562.4 50230.5 3977.6 1.7 6771.1 203.7 33.1 3593.9 10811.2 1666.4
High 24464.5 78.9 166.0 7932.5 6047.4 37130.0 1075.8 0.3 1707.9 34.1 16.9 1994.2 3683.0 80.9
Goethite Low 40753.6 385.4 131.9 11137.0 14632.5 17110.1 2298.7 0.5 3909.2 112.9 0.7 224.8 9804.2 1749.9
Medium 29688.4 141.0 342.2 21566.7 10708.3 61886.3 2769.4 1.6 4591.3 125.9 45.4 4814.1 4653.6  105.2
High 2992.3 0.6 39.3 588.8 350.4 8497.7 0.3 0.0 7.1 0.0 3.8 558.7 160.0 0.0
Hematite Low 28685.1 348.7 144.8 13647.5 13272.1 19183.1 2379.2 0.6 4280.7 130.3 3.0 589.5 8785.2 1678.6
Medium 23448.0 112.6 186.1 11982.5 7155.1 35365.3 1624.2 1.2 2648.0 70.4 23.4 2413.4 3562.1 120.4
High 21301.2 65.7 182.5 7662.5 5264.0 32945.6 1065.0 0.2 1578.8 38.0 23.6 2594.8 2270.6 56.1
C Kaolinite Low 5.2 0.0 0.0 1.5 1.4 0.9 0.0 0.0 0.3 0.1 0.0 0.2 1.4 0.0
Medium 50559.7 354.1 386.9 24990.2 18462.5 57869.0 4162.6 1.7 6751.2 199.0 42.3 4554.3 9986.5 1302.4
High 22869.4 173.0 126.5 8300.8 7227.3 29624.2 905.9 0.3 1756.0 39.7 7.7 1043.2 4629.9  552.7
Goethite Low 16045.7 385 22.1 1323.4 4608.5 3656.2 96.6 0.0 209.0 5.9 0.2 52.1 2363.4 115.8
Medium 33551.0 431.8 228.7 18888.6 14494.6 29235.3 3986.0 1.3 6420.1 183.0 9.5 1522.5 10177.2 1706.4
High 23837.6 56.7 262.6 13080.4 6588.1 54602.6 985.9 0.7 1878.5 49.9 40.3 4023.0 2077.2 32.9
Hematite Low 3983.1 89.4 42.0 3303.2 2218.1 3529.6 572.7 0.2 1152.4 32.1 1.5 267.2 1649.2  613.1
Medium 40247.3 294.0 374.5 24427.0 14854.8 62214.4 3759.0 1.6 6058.4 179.0 43.0 4681.5 9522.6  818.3
High 29204.0 143.7 96.9 5562.3 8618.3 21750.1 736.7 0.2 1296.8 27.7 5.5 649.0 3446.0 423.6
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Fig. 7. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), carbon saturation potential (b) and saturation deficit (c) for 0 to 20 cm.

Okunlola et al. (2021), the presence and quantity of a specific mineral
content depend on the spatial location. Therefore, it was necessary to
perform a regression analysis considering the geographic coordinates of
the samples and the spatial dependence of soil variability (Webster and
Oliver, 2007), so a weight matrix associated to all neighbors was
generated.

The spatial regression analysis considered as dependent variables the
potential SOC saturation deficit or potential SOC sequestration and
potential C saturation (Sat-pot), calculated from the equation of Feller
and Beller (1997) and the C in mineral-associated organic matter
(CmOM) determined in the laboratory, as explanatory variables were
considered the relative abundance of soil minerals represented by their
infrared spectral amplitudes (calculated from diffuse reflectance spec-
troscopy data (Vis-NIR-SWIR)). The mineral amplitudes correspond to
the difference between maxima and minima of the Savitzky-Golay sec-
ond derivative curves obtained from the Kubelka-Munk absorption
curves of the original spectra. These amplitudes were obtained from the
study of Mendes et al. (2020), in which the bands associated with
goethite (Gt, 422/450 nm), hematite (Hem, 535/575 nm), gibbsite (Gbs,
2265/2285 nm) and kaolinite (KIn, 1415/2205 nm) are defined. A data
set of 1248 samples was taken for the 0 to 20 cm depth and 833 for the
80 to 100 cm depth.

Spatial regression models, such as spatial autocorrelation models
(SAC; referred to in the literature as SARAR), spatially lagged models
(SLM) and spatial error model (SEM and SDEM) were fitted to predict

the potential SOC sequestration spatially (Elhorts, 2014). SARAR is a
double autoregressive model that includes the autoregressive compo-
nent of the response and the residuals, allowing to explain the spatial
dependence of the residuals.

The models are expressed in the following equation:

Y =AWY + a1, + Xp+ u; Ju| < 1
u=pWu+elp| <1

Where, Y Where, Y represents the potential saturation deficit of SOC
(Sat-def) or potential saturation of C (Sat-pot) or the CmOM, X repre-
sents the matrix of explanatory variables associated with the amplitude
of minerals, W corresponds to the matrix of weights in relation to the
distances of the nearest neighbor centroids in the polygons generated by
tessellation of the soil sampling points, A represents the spatial autore-
gressive coefficient, p the spatial autocorrelation coefficient, o corre-
sponds to the intercept,  represents the parameters linked to the
explanatory variables, u is associated with the vector of residuals with
spatial dependence and ¢ N(0, 62I), where 1 is an identity matrix.

The choice of the model that best explains the statistical relationship
of the experimental data was based on the lowest value of the Akaike
information criterion (AIC) and on the fulfilment of the assumption of
independence of the residuals based on the Moran Index Test (MIT),
with the matrix of weights of all neighbors (Liu and Chen, 2021), where
the p-value of the test must be greater than 0.05. In the case that more
than one model satisfied the above assumptions, the highest correlation
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Fig. 8. Carbon saturation potential, C in organic matter associated with the mineral fraction (mOM), saturation deficit and deficit stock associated with clay contents

at soil depth of 40 to 60 cm.

(r) between the observed values of response Y and the values estimated
by the model was used as a criterion (Hoge et al., 2018).

Once the spatial regression model has been selected, it is important
to evaluate and interpret the impact of the explanatory variables to
determine the most important ones, however, in some spatial regression
models, such as the autoregressive ones, it is not possible to perform this
interpretation directly with the coefficients of the model as it is evalu-
ated in classical regression models, therefore, according to Elhorst
(2014), strategies are proposed for the estimation and interpretation of
these coefficients, dividing them into direct, indirect and total impacts,
which are obtained from the impacts function of the spatialreg library of R
(Mendez, 2020). For the present study, the direct impacts are analyzed
and the relative importance of each explanatory variable is calculated
according to the total impacts.

2.3. Spatialization of carbon sequestration potential

The carbon sequestration potential of the clay fraction was spa-
tialized by applying the equations described in the point modeling on
the SOC and clay predicted maps for the different depths, as described in
Fig. 4.

For SOC and clay mapping, covariables (predictors) associated with
relief and a Synthetic Soil Image (SYSI) were used. The relief attributes
included elevation, slope, aspect, curvatures, valleys, hills, orientation,
and topographic wetness index as described by Carvalho et al. (2019)
and Sabetizade et al. (2021). The terrain variables were from a digital
elevation model (DEM) of the Radar Topography Mission — SRTM
(USGS, 2018), at 30 m spatial resolution. The SYSI in turn corresponds to
a mosaic of the bare soil surfaces obtained from the Landsat images
collection from 1984 to 2020. The SYSI images contain six bands in the
Vis-NIR-SWIR spectral range (blue, green, red, NIR, SWIR1 and SWIR2)
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and were obtained by applying the Geospatial Soil Sensing System
(GEOS3), developed by Dematte et al. (2018).

The Random Forest (RF) algorithm was chosen for spatial prediction,
as it was reported as the best performing predictive algorithm in SOC
mapping (Khaledian and Miller, 2020, Zeraatpisheh et al., 2020, Lam-
ichhane et al., 2019; Padarian et al., 2020). RF is a nonparametric model
that performs classification and regression of sets through the con-
struction of several decision trees in the training stage, where each tree
is generated by a random vector (Breiman, 2001). The subdivisions
within each tree are determined based on predictor variables chosen
randomly from the set of variables (Coelho et al., 2020). Its strength is
based on bootstrapping randomization of data and random input se-
lection (Sothe et al., 2022) with replacement of the original data and
internal validation with data not used in the bootstrap procedure
(Khaledian and Miller, 2020, Zeraatpisheh et al., 2020). The samples (n
= 2354) were randomly divided into 70% and 30% for calibration and
validation, respectively. The adjusted coefficient of determination (R?)
was used as a model evaluation metric.

For the spatialization of the C sequestration potential of each of the
minerals that compose the clay fraction (goethite, hematite, gibbsite and
kaolinite), we used the mineral maps elaborated by Mendes et al.
(2021), which were obtained by digital soil mapping, using diffuse
reflectance spectroscopy (Vis-NIR-SWIR) to estimate mineral abundance
at specific locations and environmental covariates for spatialization. As
for the clay fraction, the equations described in the point model were
applied using map algebra, where “Particles < 20 um (%)” was replaced
by the abundance map of each mineral at different depths, leaving fixed
the predicted SOC maps for the different depths. According to Sothe
et al. (2022) in the use of machine learning models for SOC prediction it
is possible to use the same model keeping some covariates fixed to
identify the influence of the variable of interest in the SOC prediction.
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Fig. 9. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), carbon saturation potential (b) and saturation deficit (c) for 40 to 60 cm.

Such spatialization will allow us to observe a spatial approximation of
the individual contribution of the minerals that compose the clay frac-
tion in the C sequestration potential, and together with the predictive
model of this potential obtained from the spatial regression, will help to
understand the dynamics of the potential of the mineralogy of the clay
fraction to sequester new carbon.

3. Results
3.1. Point modeling of soil carbon sequestration potential

For the selection of the best fit models of the relationship between
the response associated with the carbon sequestration potential or po-
tential saturation deficit of SOC (Sat-def), potential saturation of C (Sat-
pot) and CmOM with the explanatory variables related to mineral
amplitude, the pure spatial autoregressive regression models (PAR), the
spatial lag model (SLM), the spatial error (SEM), the spatial double
autoregressive model (SARAR) and the spatial Durbin error (SDEM)
were used were used, however the latter was excluded from Sat-pot and
CmOM because a fit was not achieved (Tables 1 and 2).

Sat-def = potential carbon saturation deficit or carbon sequestration
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potential. A = amplitude of the different minerals AKIn (kaolinite), AGt
(goethite), AHem (hematite), AGbs (gibbsite).

Where A = amplitude of the different minerals AKlIn (kaolinite), AGt
(goethite), AHem (hematite), AGbs (gibbsite).

Based on the MIT evaluation (Tables 1 and 2), only the SARAR
model, for each of the dependent variables, satisfied the criteria. Based
on AIC and r, the SARAR model also performed best in all three models
for the depth of 0-20 cm (Sat-def: AIC = 6692 y r = 0,56; CmOM: AIC =
6659 y r = 0.60; Sat-pot: AIC = 6587 y r = 0.76) and 80-100 cm (Sat-def:
AIC = 4429 y r = 0,66; CmOM: AIC = 3734 y r = 0.70; Sat-pot: AIC =
4481 y r = 0.66). For 0-20 cm, the SARAR model of carbon sequestra-
tion potential (Sat-def) includes all minerals, whereas, for the latter
depth, it includes only kaolinite and hematite. CmOM is also explained
by all minerals at the first depth, and the importance of kaolinite was lost
in the last layer. On the contrary, Sat-pot at the first depth was only
explained by kaolinite and hematite, and at the last depth kaolinite,
gibbsite and hematite were considered.

Where A = amplitude of the different minerals AKln (kaolinite), AGt
(goethite), AHem (hematite), AGbs (gibbsite). Pr (>IzI) is related to the
significance of each variable in the model, with lower values high-
lighting greater importance.
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Fig. 10. Carbon saturation potential, C in organic matter associated with the mineral fraction (mOM), saturation deficit and deficit stock associated with clay

contents at a soil depth of 80 to 100 cm.

Satdef = potential carbon saturation deficit or carbon sequestration
potential. A = amplitude of the different minerals AKlIn (kaolinite), AGt
(goethite), AHem (hematite), AGbs (gibbsite). Pr (>IzI) is related to the
significance of each variable in the model, with lower values high-
lighting greater importance.

The models for each depth described in the tables 2 and 3 can be
expressed from the matrix point of view as shown in the following
equations:

1) For depth from 0 to 20 cm:

Csat — def = 0.87Wy — 0.64 + 840AKin — 1264AGbs — 164AGt

+ 612AHem + u;u
=0.66Wu + ¢

CmOM = 0.88Wy — 0.81 — 278.9AKIn + 1283.4AGbs + 164.7AGt
+ 183.2AHem + u;u
=0.88Wu + ¢

CSatPot = 0.89Wy — 0.46 + 616.6AKIn + 824.2AHem + u;
u=0.71Wu+¢
2) For depth from 80 to 100 cm:

Csat — def = 0.82Wy — 1.66 4 600AKIn + 127AHem + u;
u=0.8Wu+e

CmOM = 0.94Wy — 1.71 + 720.1AGbs + 66.6AGt + 188.4AHem + u;
u=0.92Wu+¢

CSatPot = 0.86Wy — 3.03 + 716.4AKin + 886.4AGbs + 346.4AHem + u;
u=0.86Wu+e

Where, Sat-def = potential carbon saturation deficit or carbon
sequestration potential, CmOM = C in organic matter associated with
the mineral fraction, Sat-pot = Potential carbon saturation, A =

amplitude of the different minerals AKIn (kaolinite), AGt (goethite),
AHem (hematite), AGbs (gibbsite), W corresponds to the matrix of
weights, u is associated with the vector of residuals with spatial
dependence and ¢ N(0, 62I), where I is an identity matrix.

The spatial modeling results show that the carbon sequestration
potential (sat-def) for 0-20 cm depth could be explained by the relative
contents of kaolinite, gibbsite, goethite and hematite (Table 3). Where
kaolinite and hematite had the largest direct positive impact. On the
contrary, a direct but negative impact was observed for goethite and
gibbsite, which could indicate that an increase in the concentration of
these minerals reduces the C sequestration potential of the soil, however
these minerals have the highest affinity for organic molecules (Kaiser
and Zech, 2000; Dos Reis et al., 2014), so they tend to saturate first
compared to kaolinite and hematite, and stabilize more efficiently the
sequestered C (Kalbitz et al., 2005; Dos Reis et al., 2014), in that sense,
such negative impacts could then be translated as the higher concen-
tration of these minerals, the greater stabilization of organic molecules
may occur, that is, higher current COS content and lower potential to
sequester new carbon. This explains the results of the model for potential
C saturation (sat-pot, Table 4), corresponding to the theoretical
maximum of SOC, which in the 0-20 cm depth was only explained by
kaolinite and hematite, indicating that it is these minerals that have the
potential to sequester new carbon.

It is also important to highlight that the CmOM model for the 0 to 20
cm depth (Table 4) shows greater importance in gibbsite and goethite
(Fig. 5), due to the potential for stabilization of organic molecules pre-
sented by these minerals, which corroborates that these are the ones
who contribute most to the current carbon, and contrary to the Sat-def
model (Table 3), the negative impacts were presented in kaolinite,
since, as mentioned above, the carbon associated with this mineral is
related to the potential for sequestering new carbon. On the other hand,
the carbon sequestration potential (sat-def) for the 80 to 100 cm depth
(Table 3) was mainly explained by the contents of kaolinite and
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Fig. 11. Percentage of kaolinite, goethite, hematite, and gibbsite minerals (a), carbon saturation potential (b) and saturation deficit (c) for 80 to 100 cm.

hematite, with the greatest impact of kaolinite (Fig. 5). CmOM at this
depth (Table 4) was mainly explained by gibbsite, goethite and hema-
tite, with greater impact of gibbsite and hematite (Fig. 5). On the con-
trary, Sat-pot was explained by kaolinite, gibbsite and hematite with
higher impact of kaolinite and hematite. It is important to highlight the
importance of hematite in the carbon sequestration and stabilization
cycle at the two depths, since in all three models it is a variable of high
importance (Fig. 5). According to Georgiou et al. (2022) increasing
mineral-associated C is key to long-lasting C sequestration, and for the
soils of the study region hematite responds to these additional spaces to
sequester and stabilize new C along the soil profile.

In general, the participation of goethite and gibbsite in explaining
the C sequestration potential (sat-def) was low in the 0 to 20 cm depth
and null in the 80 to 100 cm depth (Fig. 5), with greater importance of
kaolinite compared to hematite, whose difference was not so marked for
the 0 to 20 cm depth.

3.2. Carbon sequestration potential mapping

Carbon and clay maps were obtained for the different depths using
DSM with R? of 0.6 and 0.7, respectively. Areas with higher clay content
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had a higher carbon sequestration potential (areas in red), that is, the
minerals that compose this fraction had the potential to retain more
carbon, and these were related to agricultural areas (Figs. 6 and 13,
Table 5). On the contrary, areas with more than 15 years under the same
land use, such as pastures and forests (Figs. 6 and 13, Table 5), had less
potential for additional carbon sequestration.

When evaluating the individual contribution of each mineral (Fig. 7),
it was observed that the zones with the highest C sequestration potential
in Fig. 6 corresponded to areas that were saturated, highlighting the
importance of the individual analysis of the minerals that make up the
clay fraction, because evidently not all of them have the potential to
sequester new carbon, being kaolinite and hematite those that still have
space to store new carbon in the 0 to 20 cm depth, which was consistent
with the result of the spatial regression models in Tables 3 and 4 elated
to Sat-def and Sat-pot. Spatially, a high C sequestration potential was
evidenced for kaolinite in the areas related to pasture and agricultural
mosaics with more than 15 years (Fig. 13, Table 5), and the agricultural
zone presented a low to null C sequestration potential (Fig. 7, Fig. 13).
For gibbsite and goethite, zero sequestration potential was observed,
indicating C saturation since the major contribution of these minerals
translates into the current C associated with the mineral fraction
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Fig. 12. Variation of the content of the potential C saturation deficit or C sequestration potential, at different soil depths.

(CmOM), confirming their low importance in the Sat-def spatial
regression model (Fig. 5). On the other hand, areas dominated by he-
matite had a medium to high sequestration potential. Areas under
agriculture and agricultural mosaics with pastures and forests showed
the highest potential for carbon sequestration by hematite.

For the 40-60 cm and 80-100 cm depths, an increase in carbon
sequestration potential was observed compared to the 0-20 cm depth
(Figs. 8, 10 and 12). Specifically, the increase in potential in relation to
the first depth was observed in the agricultural zones, from the north and
southwest of the study area, with a considerable improvement in the
zones that had mixed pasture and cropping (Fig. 13, Table 5).

Higher mineral contents were observed in the deeper layers (Figs. 9
and 11), especially kaolinite. However, the contents of other minerals
showed a reduction at 40-60 cm and a considerable increase at 80-100
cm depth, which was reflected in an increase in C sequestration poten-
tial. It should be noted that even with the reduction of iron and
aluminum oxide minerals contents at depth 40-60 cm (Fig. 9), a
considerable improvement in the carbon sequestration potential of he-
matite and kaolinite were observed. A slight improvement in the po-
tential of gibbsite and goethite was also observed, where gibbsite
maintains a low potential in most of the area, with a slight improvement
in the proximity of pasture, forest and cropping mosaics. The increase in
C sequestration potential for goethite was observed in areas with crop
and pasture mosaics. For hematite, low C sequestration potential was
maintained in the northeastern part of the study area, corresponding to
areas with more than 15 years in agriculture (Fig. 13, Table 5).

For 80-100 cm, the results of Sothe et al. (2022) were confirmed,
showing that the kaolinite and the iron and aluminum oxides were not
fully saturated (Figs. 10 and 11). C sequestration potential was higher,
observing an increase in the potential for hematite in the areas under
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agriculture, with an increase in hematite potential observed in the areas
under agriculture, which at depths 40-60 cm still showed low seques-
tration potential. Similarly, an increase in the sequestration potential for
goethite and gibbsite were observed in the areas with pasture and
cropping mosaics, maintaining a low potential in the areas with agri-
cultural use for more than 15 years (Fig. 13, Table 5). Statistically, the
point modelling highlighted the importance of kaolinite and hematite in
the carbon sequestration potential of this depth (Table 3), however, it
did not consider this contribution of gibbsite and goethite.

In general, it was observed that as the depth increases, there is a
greater potential for sequestration of new C (Fig. 12), because there is
less current C content in the mineral fraction, as Georgiou et al. (2022)
mention, the greater the depth, the greater the subsaturation of C
associated with minerals, therefore it is possible to consider that there is
a potential carbon pool that could be exploited with the inclusion of
shrub and tree crops whose root system reaches deeper into the soil.

4. Discussion

According to Boddey et al. (2010), the analysis of carbon storage
potential requires the evaluation of deeper soil layers because studies
from 0 to 100 cm depth reveal 59% more storage in relation to a study
from O to 30 cm. That is, the inclusion of depth allows adequate pre-
diction of SOC concentration (Sothe et al., 2022), since at shallower
depths the mineral particles are more saturated with SOC. Therefore,
depth allows for improved analysis of SOC storage potential (Hobley
et al.,, 2015). This was confirmed in the present study, where with
increasing depth a higher carbon sequestration potential was observed
(Fig. 12), due to lower carbon saturation in clay fraction minerals such
as kaolinite, hematite, goethite and gibbsite (Figs. 7, 9 and 11) and to the
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Fig. 13. Additional variables, Land use history (1985-2015) based on Tayebi et al. (2021) (a), iron oxide (F203) (b) and pH in water (c).

increase in the content of these minerals with depth, as they are more
commonly found in highly weathered soils, with greater homogeneity in
depth (Berg and Oliveira, 2000) and according to Georgiou et al. (2022)
the maximum C content associated with minerals depends on the
amount and type of mineral.

Ingram and Fernandes (2001), Weil and Brady (2016), indicated the
importance of clay mineralogy on the potential of a soil to store organic
carbon, especially in the deeper layers (Gray et al., 2015, Wiesmeier
et al., 2011). In the present study, the spatial regression models showed
a clear difference in the minerals contributing to carbon sequestration
potential at depth O to 20 and 80 to 100 cm (Table 2), with low
contribution of gibbsite and goethite at the deeper depth. However, in
Figs. 9 and 11, the contribution of goethite and gibbsite in this overall
contribution of new carbon sequestration that is not seen in the statis-
tical model was observed.

Interpreting the individual contribution of the carbon sequestration
potential of the clay fraction minerals is difficult due to their coexistence
(Kirsten et al., 2021). Georgiou et al. (2022) points out the importance of
generating mathematical models that allow inferring the C associated
with the mineral fraction, however, their study was based on the limit
line analysis where the determination of the C saturation potential is
based on the highest C stocks and C contents in soils with presence of 2:1
clays and poorly crystalline minerals, which theoretically have higher
capacity to stabilize C. For the present study this theoretical maximum
limit was calculated as the potential C saturation based on the equation
of Feller and Beare (1997) and spatial regression models were used to
explain this potential C saturation (Sat-pot), the C associated with the
mineral fraction (CmOM) and the potential for sequestration of new C
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(Sat-def) as a function of the relative abundance of the minerals that
compose the clay fraction, finding the best fits with the SARAR double
autoregressive spatial regression model, highlighting that the main
contributing minerals in the C sequestration potential correspond to
kaolinite and hematite (Table 3), with a low contribution of goethite and
gibbsite in the 0 to 20 cm depth (Fig. 5). These minerals have direct
impacts that indicate that a reduction in their concentration could
reduce the C sequestration potential of the study area, since they are the
minerals that contribute most to C stabilization and to the CmOM
content.

According to Schaefer et al. (2008), the clay fraction of Brazilian soils
is dominated by kaolinite and low crystallinity Fe and Al oxides, typi-
cally corresponding to gibbsite, hematite, goethite and maghemite
(Kampf and Curi, 2003). This low crystallinity of these iron oxides in
Brazilian soils translates into more effective OM stability than crystalline
Fe oxides or oxyhydroxides (Schaefer et al., 2008), because they exhibit
electrostatic attractions and ionic bonds between the hydroxyl groups of
the oxides and the carboxyl or hydroxyl groups of the OM (Duiker et al.,
2003, De Mastro et al., 2020). In our study area, the presence of parental
material associated with basalt (Fig. 1) allows locating ferruginous
minerals of low degree of crystallinity according to Tombdcz et al.
(2004) and Ashton et al. (2016). Such localization coincides with the
concentration of iron oxides with higher affinity for the MO (Ashton
etal., 2016), which highlights that the reduction of goethite and gibbsite
contents affects the stabilized MO, since as observed in the CmOM
model, these minerals account for approximately 90% of the importance
in explaining the current C of the mineral fraction (Fig. 5).

According to Guzman et al. (1994), goethite usually presents greater
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affinity for OM because it presents a double network of octahedra, where
Fe'® occupies only half of the spaces (Bigham et al., 2002). It gives a
greater specific surface area for this oxide, compared to hematite, which
presents an occupation of Fet® in 66% of the oxygens, reducing its
specific surface area (Bigham et al., 2002) considerably. Kaiser and
Guggenberger (2000) indicated that goethite and gibbsite have a high
density of reactive sorptive sites, allowing more effective organo-
mineral interactions. Hematite has a denser structure and lower sur-
face area compared to goethite, having lower reactivity of hydroxyl
groups on its surface (Dos Reis et al., 2014). Therefore, carbon had af-
finity and preference for goethite (Figs. 7 and 9). Similarly, it was found
that gibbsite also had higher carbon saturation potential.

A decrease in pH increases the positive charges of iron oxides,
increasing OC sorption (Ashton et al., 2016). However, the high pres-
ence of kaolinite could generate an increase in the negative charges
neutralizing the positive charges of the oxides. In turn, it could lead to a
reduction of stabilized OC (Kirsten et al., 2021), which is evidenced in
the greater carbon retention potential, being clear the role played by pH
(Ashton et al., 2016), as it influences the surface charge and therefore
the adsorption capacity of organic compounds (Saidy et al., 2013). The
pH control of the protonation and deprotonation of hydroxyl groups
(Wang et al., 2020). For the study area, the more significant presence of
kaolinite was related to a high hematite content, especially in the
eastern region, where pH ranged from strongly acidic (5 to 5.5) to
moderately acidic (5.6 to 6) (Fig. 13), which could also explain the high
potential for carbon sequestration in these areas.

Land use type also influences SOC content due to differences in
vegetation and C input. Agricultural and highly degraded soils have
considerable potential to store additional SOC (Wiesmeier et al., 2013,
Georgiou et al., 2022), as a marked depletion of SOC stocks is observed
(Paustian et al., 1997, Lal, 2004, Smith, 2004, Follett et al., 2001,
Padarian et al., 2022). Sothe et al. (2022), reported a higher concen-
tration of SOC in crops than in grazing land. Areas with more than 15
years of agriculture had both the lowest and the highest carbon
sequestration potential (Table 5), that is, minerals such as goethite and
gibbsite at depth 0 to 20 cm present a low potential to sequester new
carbon in the study area and at greater depth the low potential is
concentrated in these areas with traditional agricultural use. On the
other hand, at shallower depths, minerals such as hematite and kaolinite
had a higher sequestration potential, being higher for kaolinite in areas
of pasture and cropping mosaics, and higher for hematite in areas with
cropping mosaics of pasture and forest. With increasing depth, unlike
goethite and gibbsite, kaolinite and hematite had high carbon seques-
tration potential in areas with traditional agricultural use. In agricul-
tural areas, management practices that favor sequestration are related to
the promotion of organic inputs, conservation/minimum tillage, con-
version of cropland to pasture, introduction of perennials, proper
management of cultivated peatlands, and organic farming (Sauerbeck,
2001, Vleeshouwers and Verhagen, 2002, Freibauer et al., 2004, Lal,
2004, Johnson et al., 2007, Smith, 2012). Rabbi et al. (2015) and Ashton
et al. (2016), reported that conversion of cropland to grassland could
increase carbon sequestration, that coincides with the observed results.

Afforestation and pasture improvements could contribute with soil
carbon storage increase (Zeraatpishe and Khormali, 2012, Nave et al.,
2013). It has also been reported when conversion from forest to
managed pasture and from cropland to pasture occurred (Poeplau and
Don, 2013). The areas under exclusively forest use presents low
sequestration potential and the minerals such as goethite were highly
saturated. On the other hand, areas with cropping and pasture mosaics
presents a medium potential for carbon sequestration. However, it was
evident that as the depth increases, the carbon sequestration potential
improves in the forest uses, especially in agriculture and forest mosaics.
For Minasny et al. (2013), historical land use is a variable that influences
the explanation of carbon concentrations in deeper soil layers. Land use
change can favor carbon sequestration because it results in a variation of
organic compounds reaching the soil and mechanization can reactivate
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the carbon cycle, where bacteria in the environment take advantage of
the released carbon, however, there are residues of this microbial
decomposition that can be retained by minerals (Kirsten et al., 2021).

Acosta-Martinez et al. (2004) concluded that continuous mono-
culture systems had a negative impact on soil function and sustain-
ability. Cultivation and tillage reduce and change the distribution of
SOC, while appropriate crop rotation can increase or maintain the
quantity and quality of SOM, improving soil chemical and physical
properties (Liu et al., 2006). Crop intensity or frequency affects SOC
storage by modifying the amount of time the soil is supporting a crop,
thereby increasing annual production and C input to the soil (Ogle et al.,
2005). Areas with the same land use for more than 15 years were those
with higher saturation of minerals, such as goethite and gibbsite (higher
affinity for SOM), as well kaolinite and hematite (low affinity for SOM).
However, it was clear that those areas with agriculture and pasture
mosaics, and pasture and forest mosaics, had the greater potential to
retain new carbon, and its potential increases with soil depth (Table 5).

These areas with higher retention potential due to mineralogy are
key to promote CO2 sequestration by agroforestry and silvopastoral
systems, because as evidenced, it is important to exploit the potential of
goethite and gibbsite at depth (Fig. 11, Table 5), since, as indicated by
Georgiou et al. (2022), the deeper the soil minerals are, the less satu-
rated they become. Additionally, crop rotation or cover crops to exploit
the potential of the most superficial layers of the soil is also important.
The results presented could contribute to climate change mitigation
strategies, as described by Minasny et al. (2017), who pointed out that at
the 21st Conference of the Parties to the United Nations Framework
Convention on Climate Change in Paris (COP21) the strategy “4 per
thousand soils for food security and climate” was unveiled. This strategy
aims to increase global soil organic matter stocks by 4 per 1000 (or
0.4%) per year considering soil organic carbon sequestration as a
possible solution to mitigate climate change by taking atmospheric CO»
and converting it into long-lived soil carbon.

The land uses described correspond to a historical use analysis for a
period of 30 years. The number 50 in the heading relates to the middle of
the period under this use. The highlighted numbering indicates the
largest areas with high, medium and low carbon saturation potential.

5. Conclusions

The C sequestration potential prediction models obtained in the
present study confirm the importance of the minerals that compose the
clay fraction in the C sequestration potential of the soil. The prediction
of this potential was fitted to a spatial regression model SARAR (Spatial
AutoRegressive-AutoRegressive model) for depths of 0 to 20 and 80 to
100 cm, where at a depth of 0 to 20 cm the sequestration potential is
explained by the content of kaolinite, hematite, goethite and gibbsite,
with kaolinite and hematite being the most important explanatory var-
iables. On the other hand, goethite and gibbsite had a direct but negative
impact, indicating that an increase in the concentration of these min-
erals reduces the potential for sequestration of new C, due to the affinity
they have with organic molecules, so they tend to saturate reducing their
potential to store new carbon, but translates into greater stability of
organic molecules and higher current COS content. For the 80 to 100 cm
depth, the prediction of carbon sequestration potential was explained by
the content of kaolinite and hematite, with greater importance of
kaolinite. Hematite is a mineral of importance in carbon sequestration
and stabilization since it was a variable of high importance in explaining
mineral-associated C (CmOM), potential C saturation (Sat-pot) and C
sequestration potential (Sat-def) at different depths.

Soil carbon sequestration potential by mineralogy is strongly influ-
enced by land use. Areas of pasture and crop on soils with high kaolinite
and hematite content presented greater potential to sequester carbon. In
addition, areas with lower pH and higher kaolinite and hematite content
also have a high potential for carbon sequestration, which can be
enhanced by land use change.
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Gibbsite and goethite had a higher sorption power of organic mole-
cules; therefore, they had a lower potential for sequestration of new
carbon in areas with the same land use for more than 15 years, because
they are the first minerals to become saturated, especially in the surface
layers. However, their potential increases in cropping and pasture areas
at greater depths because the concentration of SOM was lower. Soils at
greater depths had the greatest potential for carbon sequestration and
could be key for climate change mitigation strategies.
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